PostgreSQL specific aggregation functions
These functions are described in more detail in the PostgreSQL docs.
Note
All functions come without default aliases, so you must explicitly provide one. For example:
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
{'arr': [0, 1, 2]}
 General-purpose aggregation functions
ArrayAgg
 - 
class ArrayAgg(expression, **extra)[source]
- 
Returns a list of values, including nulls, concatenated into an array. 
BitAnd
 - 
class BitAnd(expression, **extra)[source]
- 
Returns an intof the bitwiseANDof all non-null input values, orNoneif all values are null.
BitOr
 - 
class BitOr(expression, **extra)[source]
- 
Returns an intof the bitwiseORof all non-null input values, orNoneif all values are null.
BoolAnd
 - 
class BoolAnd(expression, **extra)[source]
- 
Returns True, if all input values are true,Noneif all values are null or if there are no values, otherwiseFalse.
BoolOr
 - 
class BoolOr(expression, **extra)[source]
- 
Returns Trueif at least one input value is true,Noneif all values are null or if there are no values, otherwiseFalse.
JSONBAgg
 - 
class JSONBAgg(expressions, **extra)[source]
- 
New in Django 1.11.Returns the input values as a JSONarray. Requires PostgreSQL ≥ 9.5.
StringAgg
 - 
class StringAgg(expression, delimiter, distinct=False)[source]
- 
Returns the input values concatenated into a string, separated by the delimiterstring.- 
delimiter
- 
Required argument. Needs to be a string. 
 - 
distinct
- 
New in Django 1.11.An optional boolean argument that determines if concatenated values will be distinct. Defaults to False.
 
- 
Aggregate functions for statistics
y and x
 The arguments y and x for all these functions can be the name of a field or an expression returning a numeric data. Both are required.
Corr
 - 
class Corr(y, x)[source]
- 
Returns the correlation coefficient as a float, orNoneif there aren’t any matching rows.
CovarPop
 - 
class CovarPop(y, x, sample=False)[source]
- 
Returns the population covariance as a float, orNoneif there aren’t any matching rows.Has one optional argument: - 
sample
- 
By default CovarPopreturns the general population covariance. However, ifsample=True, the return value will be the sample population covariance.
 
- 
RegrAvgX
 - 
class RegrAvgX(y, x)[source]
- 
Returns the average of the independent variable ( sum(x)/N) as afloat, orNoneif there aren’t any matching rows.
RegrAvgY
 - 
class RegrAvgY(y, x)[source]
- 
Returns the average of the dependent variable ( sum(y)/N) as afloat, orNoneif there aren’t any matching rows.
RegrCount
 - 
class RegrCount(y, x)[source]
- 
Returns an intof the number of input rows in which both expressions are not null.
RegrIntercept
 - 
class RegrIntercept(y, x)[source]
- 
Returns the y-intercept of the least-squares-fit linear equation determined by the (x, y)pairs as afloat, orNoneif there aren’t any matching rows.
RegrR2
 - 
class RegrR2(y, x)[source]
- 
Returns the square of the correlation coefficient as a float, orNoneif there aren’t any matching rows.
RegrSlope
 - 
class RegrSlope(y, x)[source]
- 
Returns the slope of the least-squares-fit linear equation determined by the (x, y)pairs as afloat, orNoneif there aren’t any matching rows.
RegrSXX
 - 
class RegrSXX(y, x)[source]
- 
Returns sum(x^2) - sum(x)^2/N(“sum of squares” of the independent variable) as afloat, orNoneif there aren’t any matching rows.
RegrSXY
 - 
class RegrSXY(y, x)[source]
- 
Returns sum(x*y) - sum(x) * sum(y)/N(“sum of products” of independent times dependent variable) as afloat, orNoneif there aren’t any matching rows.
RegrSYY
 - 
class RegrSYY(y, x)[source]
- 
Returns sum(y^2) - sum(y)^2/N(“sum of squares” of the dependent variable) as afloat, orNoneif there aren’t any matching rows.
Usage examples
We will use this example table:
| FIELD1 | FIELD2 | FIELD3 | |--------|--------|--------| | foo | 1 | 13 | | bar | 2 | (null) | | test | 3 | 13 |
Here’s some examples of some of the general-purpose aggregation functions:
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
{'result': 'foo;bar;test'}
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
{'result': [1, 2, 3]}
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
{'result': ['foo', 'bar', 'test']}
 The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you can read about this, for example, at wikipedia):
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
{'count': 2}
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
...                             avgy=RegrAvgY(y='field3', x='field2'))
{'avgx': 2, 'avgy': 13}
    © Django Software Foundation and individual contributors
Licensed under the BSD License.
    https://docs.djangoproject.com/en/1.11/ref/contrib/postgres/aggregates/