Enum
Provides a set of algorithms to work with enumerables.
In Elixir, an enumerable is any data type that implements the Enumerable
protocol. List
s ([1, 2, 3]
), Map
s (%{foo: 1, bar: 2}
) and Range
s (1..3
) are common data types used as enumerables:
iex> Enum.map([1, 2, 3], fn x -> x * 2 end) [2, 4, 6] iex> Enum.sum([1, 2, 3]) 6 iex> Enum.map(1..3, fn x -> x * 2 end) [2, 4, 6] iex> Enum.sum(1..3) 6 iex> map = %{"a" => 1, "b" => 2} iex> Enum.map(map, fn {k, v} -> {k, v * 2} end) [{"a", 2}, {"b", 4}]
However, many other enumerables exist in the language, such as MapSet
s and the data type returned by File.stream!/3
which allows a file to be traversed as if it was an enumerable.
The functions in this module work in linear time. This means that, the larger the enumerable, the longer it will take to perform the desired operation. This is expected on operations such as Enum.map/2
. After all, if we want to traverse every element on a list, the longer the list, the more elements we need to traverse, and the longer it will take.
This linear behaviour should also be expected on operations like count/1
, member?/2
, at/2
and similar. While Elixir does allow data types to provide performant variants for such operations, you should not expect it to always be available, since the Enum
module is meant to work with a large variety of data types and not all data types can provide optimized behaviour.
Finally, note the functions in the Enum
module are eager: they will traverse the enumerable as soon as they are invoked. This is particularly dangerous when working with infinite enumerables. In such cases, you should use the Stream
module, which allows you to lazily express computations, without traversing collections, and work with possibly infinite collections. See the Stream
module for examples and documentation.
Summary
Types
Functions
- all?(enumerable, fun \\ fn x -> x end)
Returns
true
if the givenfun
evaluates to a truthy value (neitherfalse
nornil
) on all of the items in theenumerable
.- any?(enumerable, fun \\ fn x -> x end)
Returns
true
if the givenfun
evaluates to true on any of the items in theenumerable
.- at(enumerable, index, default \\ nil)
Finds the element at the given
index
(zero-based).- chunk_by(enumerable, fun)
Splits enumerable on every element for which
fun
returns a new value.- chunk_every(enumerable, count)
Shortcut to
chunk_every(enumerable, count, count)
.- chunk_every(enumerable, count, step, leftover \\ [])
Returns list of lists containing
count
items each, where each new chunk startsstep
elements into theenumerable
.- chunk_while(enumerable, acc, chunk_fun, after_fun)
Chunks the
enumerable
with fine grained control when every chunk is emitted.- concat(enumerables)
Given an enumerable of enumerables, concatenates the
enumerables
into a single list.- concat(left, right)
Concatenates the enumerable on the
right
with the enumerable on theleft
.- count(enumerable)
Returns the size of the
enumerable
.- count(enumerable, fun)
Returns the count of items in the
enumerable
for whichfun
returns a truthy value.- dedup(enumerable)
Enumerates the
enumerable
, returning a list where all consecutive duplicated elements are collapsed to a single element.- dedup_by(enumerable, fun)
Enumerates the
enumerable
, returning a list where all consecutive duplicated elements are collapsed to a single element.- drop(enumerable, amount)
Drops the
amount
of items from theenumerable
.- drop_every(enumerable, nth)
Returns a list of every
nth
item in theenumerable
dropped, starting with the first element.- drop_while(enumerable, fun)
Drops items at the beginning of the
enumerable
whilefun
returns a truthy value.- each(enumerable, fun)
Invokes the given
fun
for each item in theenumerable
.- empty?(enumerable)
Determines if the
enumerable
is empty.- fetch(enumerable, index)
Finds the element at the given
index
(zero-based).- fetch!(enumerable, index)
Finds the element at the given
index
(zero-based).- filter(enumerable, fun)
Filters the
enumerable
, i.e. returns only those elements for whichfun
returns a truthy value.- find(enumerable, default \\ nil, fun)
Returns the first item for which
fun
returns a truthy value. If no such item is found, returnsdefault
.- find_index(enumerable, fun)
Similar to
find/3
, but returns the index (zero-based) of the element instead of the element itself.- find_value(enumerable, default \\ nil, fun)
Similar to
find/3
, but returns the value of the function invocation instead of the element itself.- flat_map(enumerable, fun)
Maps the given
fun
overenumerable
and flattens the result.- flat_map_reduce(enumerable, acc, fun)
Maps and reduces an
enumerable
, flattening the given results (only one level deep).- group_by(enumerable, key_fun, value_fun \\ fn x -> x end)
Splits the
enumerable
into groups based onkey_fun
.- intersperse(enumerable, element)
Intersperses
element
between each element of the enumeration.- into(enumerable, collectable)
Inserts the given
enumerable
into acollectable
.- into(enumerable, collectable, transform)
Inserts the given
enumerable
into acollectable
according to the transformation function.- join(enumerable, joiner \\ "")
Joins the given
enumerable
into a binary usingjoiner
as a separator.- map(enumerable, fun)
Returns a list where each item is the result of invoking
fun
on each corresponding item ofenumerable
.- map_every(enumerable, nth, fun)
Returns a list of results of invoking
fun
on everynth
item ofenumerable
, starting with the first element.- map_join(enumerable, joiner \\ "", mapper)
Maps and joins the given
enumerable
in one pass.- map_reduce(enumerable, acc, fun)
Invokes the given function to each item in the
enumerable
to reduce it to a single element, while keeping an accumulator.- max(enumerable, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
Returns the maximal element in the
enumerable
according to Erlang's term ordering.- max_by(enumerable, fun, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
Returns the maximal element in the
enumerable
as calculated by the given function.- member?(enumerable, element)
Checks if
element
exists within theenumerable
.- min(enumerable, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
Returns the minimal element in the
enumerable
according to Erlang's term ordering.- min_by(enumerable, fun, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
Returns the minimal element in the
enumerable
as calculated by the given function.- min_max(enumerable, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
Returns a tuple with the minimal and the maximal elements in the enumerable according to Erlang's term ordering.
- min_max_by(enumerable, fun, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
Returns a tuple with the minimal and the maximal elements in the enumerable as calculated by the given function.
- random(enumerable)
Returns a random element of an
enumerable
.- reduce(enumerable, fun)
Invokes
fun
for each element in theenumerable
with the accumulator.- reduce(enumerable, acc, fun)
Invokes
fun
for each element in theenumerable
with the accumulator.- reduce_while(enumerable, acc, fun)
Reduces
enumerable
untilfun
returns{:halt, term}
.- reject(enumerable, fun)
Returns a list of elements in
enumerable
excluding those for which the functionfun
returns a truthy value.- reverse(enumerable)
Returns a list of elements in
enumerable
in reverse order.- reverse(enumerable, tail)
Reverses the elements in
enumerable
, appends thetail
, and returns it as a list.- reverse_slice(enumerable, start_index, count)
Reverses the
enumerable
in the range from initialstart_index
throughcount
elements.- scan(enumerable, fun)
Applies the given function to each element in the
enumerable
, storing the result in a list and passing it as the accumulator for the next computation. Uses the first element in theenumerable
as the starting value.- scan(enumerable, acc, fun)
Applies the given function to each element in the
enumerable
, storing the result in a list and passing it as the accumulator for the next computation. Uses the givenacc
as the starting value.- shuffle(enumerable)
Returns a list with the elements of
enumerable
shuffled.- slice(enumerable, index_range)
Returns a subset list of the given
enumerable
byindex_range
.- slice(enumerable, start_index, amount)
Returns a subset list of the given
enumerable
, fromstart_index
(zero-based) withamount
number of elements if available.- sort(enumerable)
Sorts the
enumerable
according to Erlang's term ordering.- sort(enumerable, fun)
Sorts the
enumerable
by the given function.- sort_by(enumerable, mapper, sorter \\ &<=/2)
Sorts the mapped results of the
enumerable
according to the providedsorter
function.- split(enumerable, count)
Splits the
enumerable
into two enumerables, leavingcount
elements in the first one.- split_while(enumerable, fun)
Splits enumerable in two at the position of the element for which
fun
returns a falsy value (false
ornil
) for the first time.- split_with(enumerable, fun)
Splits the
enumerable
in two lists according to the given functionfun
.- sum(enumerable)
Returns the sum of all elements.
- take(enumerable, amount)
Takes the first
amount
items from theenumerable
.- take_every(enumerable, nth)
Returns a list of every
nth
item in theenumerable
, starting with the first element.- take_random(enumerable, count)
Takes
count
random items fromenumerable
.- take_while(enumerable, fun)
Takes the items from the beginning of the
enumerable
whilefun
returns a truthy value.- to_list(enumerable)
Converts
enumerable
to a list.- uniq(enumerable)
Enumerates the
enumerable
, removing all duplicated elements.- uniq_by(enumerable, fun)
Enumerates the
enumerable
, by removing the elements for which functionfun
returned duplicate items.- unzip(enumerable)
Opposite of
zip/2
. Extracts two-element tuples from the givenenumerable
and groups them together.- with_index(enumerable, offset \\ 0)
Returns the
enumerable
with each element wrapped in a tuple alongside its index.- zip(enumerables)
Zips corresponding elements from a finite collection of enumerables into one list of tuples.
- zip(enumerable1, enumerable2)
Zips corresponding elements from two enumerables into one list of tuples.
Types
acc()
acc() :: any()
default()
default() :: any()
element()
element() :: any()
index()
index() :: integer()
Zero-based index. It can also be a negative integer.
t()
t() :: Enumerable.t()
Functions
all?(enumerable, fun \\ fn x -> x end)
all?(t(), (element() -> as_boolean(term()))) :: boolean()
Returns true
if the given fun
evaluates to a truthy value (neither false
nor nil
) on all of the items in the enumerable
.
It stops the iteration at the first invocation that returns either false
or nil
.
Examples
iex> Enum.all?([2, 4, 6], fn x -> rem(x, 2) == 0 end) true iex> Enum.all?([2, 3, 4], fn x -> rem(x, 2) == 0 end) false
If no function is given, it defaults to checking if all items in the enumerable
are truthy values.
iex> Enum.all?([1, 2, 3]) true iex> Enum.all?([1, nil, 3]) false
any?(enumerable, fun \\ fn x -> x end)
any?(t(), (element() -> as_boolean(term()))) :: boolean()
Returns true
if the given fun
evaluates to true on any of the items in the enumerable
.
It stops the iteration at the first invocation that returns a truthy value (neither false
nor nil
).
Examples
iex> Enum.any?([2, 4, 6], fn x -> rem(x, 2) == 1 end) false iex> Enum.any?([2, 3, 4], fn x -> rem(x, 2) == 1 end) true
If no function is given, it defaults to checking if at least one item in the enumerable
is a truthy value.
iex> Enum.any?([false, false, false]) false iex> Enum.any?([false, true, false]) true
at(enumerable, index, default \\ nil)
at(t(), index(), default()) :: element() | default()
Finds the element at the given index
(zero-based).
Returns default
if index
is out of bounds.
A negative index
can be passed, which means the enumerable
is enumerated once and the index
is counted from the end (e.g. -1
finds the last element).
Examples
iex> Enum.at([2, 4, 6], 0) 2 iex> Enum.at([2, 4, 6], 2) 6 iex> Enum.at([2, 4, 6], 4) nil iex> Enum.at([2, 4, 6], 4, :none) :none
chunk_by(enumerable, fun)
chunk_by(t(), (element() -> any())) :: [list()]
Splits enumerable on every element for which fun
returns a new value.
Returns a list of lists.
Examples
iex> Enum.chunk_by([1, 2, 2, 3, 4, 4, 6, 7, 7], &(rem(&1, 2) == 1)) [[1], [2, 2], [3], [4, 4, 6], [7, 7]]
chunk_every(enumerable, count)
(since 1.5.0)chunk_every(t(), pos_integer()) :: [list()]
Shortcut to chunk_every(enumerable, count, count)
.
chunk_every(enumerable, count, step, leftover \\ [])
(since 1.5.0)chunk_every(t(), pos_integer(), pos_integer(), t() | :discard) :: [list()]
Returns list of lists containing count
items each, where each new chunk starts step
elements into the enumerable
.
step
is optional and, if not passed, defaults to count
, i.e. chunks do not overlap.
If the last chunk does not have count
elements to fill the chunk, elements are taken from leftover
to fill in the chunk. If leftover
does not have enough elements to fill the chunk, then a partial chunk is returned with less than count
elements.
If :discard
is given in leftover
, the last chunk is discarded unless it has exactly count
elements.
Examples
iex> Enum.chunk_every([1, 2, 3, 4, 5, 6], 2) [[1, 2], [3, 4], [5, 6]] iex> Enum.chunk_every([1, 2, 3, 4, 5, 6], 3, 2, :discard) [[1, 2, 3], [3, 4, 5]] iex> Enum.chunk_every([1, 2, 3, 4, 5, 6], 3, 2, [7]) [[1, 2, 3], [3, 4, 5], [5, 6, 7]] iex> Enum.chunk_every([1, 2, 3, 4], 3, 3, []) [[1, 2, 3], [4]] iex> Enum.chunk_every([1, 2, 3, 4], 10) [[1, 2, 3, 4]] iex> Enum.chunk_every([1, 2, 3, 4, 5], 2, 3, []) [[1, 2], [4, 5]]
chunk_while(enumerable, acc, chunk_fun, after_fun)
(since 1.5.0)chunk_while( t(), acc(), (element(), acc() -> {:cont, chunk, acc()} | {:cont, acc()} | {:halt, acc()}), (acc() -> {:cont, chunk, acc()} | {:cont, acc()}) ) :: Enumerable.t() when chunk: any()
Chunks the enumerable
with fine grained control when every chunk is emitted.
chunk_fun
receives the current element and the accumulator and must return {:cont, element, acc}
to emit the given chunk and continue with accumulator or {:cont, acc}
to not emit any chunk and continue with the return accumulator.
after_fun
is invoked when iteration is done and must also return {:cont, element, acc}
or {:cont, acc}
.
Returns a list of lists.
Examples
iex> chunk_fun = fn item, acc -> ...> if rem(item, 2) == 0 do ...> {:cont, Enum.reverse([item | acc]), []} ...> else ...> {:cont, [item | acc]} ...> end ...> end iex> after_fun = fn ...> [] -> {:cont, []} ...> acc -> {:cont, Enum.reverse(acc), []} ...> end iex> Enum.chunk_while(1..10, [], chunk_fun, after_fun) [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
concat(enumerables)
concat(t()) :: t()
Given an enumerable of enumerables, concatenates the enumerables
into a single list.
Examples
iex> Enum.concat([1..3, 4..6, 7..9]) [1, 2, 3, 4, 5, 6, 7, 8, 9] iex> Enum.concat([[1, [2], 3], [4], [5, 6]]) [1, [2], 3, 4, 5, 6]
concat(left, right)
concat(t(), t()) :: t()
Concatenates the enumerable on the right
with the enumerable on the left
.
This function produces the same result as the Kernel.++/2
operator for lists.
Examples
iex> Enum.concat(1..3, 4..6) [1, 2, 3, 4, 5, 6] iex> Enum.concat([1, 2, 3], [4, 5, 6]) [1, 2, 3, 4, 5, 6]
count(enumerable)
count(t()) :: non_neg_integer()
Returns the size of the enumerable
.
Examples
iex> Enum.count([1, 2, 3]) 3
count(enumerable, fun)
count(t(), (element() -> as_boolean(term()))) :: non_neg_integer()
Returns the count of items in the enumerable
for which fun
returns a truthy value.
Examples
iex> Enum.count([1, 2, 3, 4, 5], fn x -> rem(x, 2) == 0 end) 2
dedup(enumerable)
dedup(t()) :: list()
Enumerates the enumerable
, returning a list where all consecutive duplicated elements are collapsed to a single element.
Elements are compared using ===/2
.
If you want to remove all duplicated elements, regardless of order, see uniq/1
.
Examples
iex> Enum.dedup([1, 2, 3, 3, 2, 1]) [1, 2, 3, 2, 1] iex> Enum.dedup([1, 1, 2, 2.0, :three, :three]) [1, 2, 2.0, :three]
dedup_by(enumerable, fun)
dedup_by(t(), (element() -> term())) :: list()
Enumerates the enumerable
, returning a list where all consecutive duplicated elements are collapsed to a single element.
The function fun
maps every element to a term which is used to determine if two elements are duplicates.
Examples
iex> Enum.dedup_by([{1, :a}, {2, :b}, {2, :c}, {1, :a}], fn {x, _} -> x end) [{1, :a}, {2, :b}, {1, :a}] iex> Enum.dedup_by([5, 1, 2, 3, 2, 1], fn x -> x > 2 end) [5, 1, 3, 2]
drop(enumerable, amount)
drop(t(), integer()) :: list()
Drops the amount
of items from the enumerable
.
If a negative amount
is given, the amount
of last values will be dropped. The enumerable
will be enumerated once to retrieve the proper index and the remaining calculation is performed from the end.
Examples
iex> Enum.drop([1, 2, 3], 2) [3] iex> Enum.drop([1, 2, 3], 10) [] iex> Enum.drop([1, 2, 3], 0) [1, 2, 3] iex> Enum.drop([1, 2, 3], -1) [1, 2]
drop_every(enumerable, nth)
drop_every(t(), non_neg_integer()) :: list()
Returns a list of every nth
item in the enumerable
dropped, starting with the first element.
The first item is always dropped, unless nth
is 0.
The second argument specifying every nth
item must be a non-negative integer.
Examples
iex> Enum.drop_every(1..10, 2) [2, 4, 6, 8, 10] iex> Enum.drop_every(1..10, 0) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] iex> Enum.drop_every([1, 2, 3], 1) []
drop_while(enumerable, fun)
drop_while(t(), (element() -> as_boolean(term()))) :: list()
Drops items at the beginning of the enumerable
while fun
returns a truthy value.
Examples
iex> Enum.drop_while([1, 2, 3, 2, 1], fn x -> x < 3 end) [3, 2, 1]
each(enumerable, fun)
each(t(), (element() -> any())) :: :ok
Invokes the given fun
for each item in the enumerable
.
Returns :ok
.
Examples
Enum.each(["some", "example"], fn x -> IO.puts(x) end) "some" "example" #=> :ok
empty?(enumerable)
empty?(t()) :: boolean()
Determines if the enumerable
is empty.
Returns true
if enumerable
is empty, otherwise false
.
Examples
iex> Enum.empty?([]) true iex> Enum.empty?([1, 2, 3]) false
fetch(enumerable, index)
fetch(t(), index()) :: {:ok, element()} | :error
Finds the element at the given index
(zero-based).
Returns {:ok, element}
if found, otherwise :error
.
A negative index
can be passed, which means the enumerable
is enumerated once and the index
is counted from the end (e.g. -1
fetches the last element).
Examples
iex> Enum.fetch([2, 4, 6], 0) {:ok, 2} iex> Enum.fetch([2, 4, 6], -3) {:ok, 2} iex> Enum.fetch([2, 4, 6], 2) {:ok, 6} iex> Enum.fetch([2, 4, 6], 4) :error
fetch!(enumerable, index)
fetch!(t(), index()) :: element()
Finds the element at the given index
(zero-based).
Raises OutOfBoundsError
if the given index
is outside the range of the enumerable
.
Examples
iex> Enum.fetch!([2, 4, 6], 0) 2 iex> Enum.fetch!([2, 4, 6], 2) 6 iex> Enum.fetch!([2, 4, 6], 4) ** (Enum.OutOfBoundsError) out of bounds error
filter(enumerable, fun)
filter(t(), (element() -> as_boolean(term()))) :: list()
Filters the enumerable
, i.e. returns only those elements for which fun
returns a truthy value.
See also reject/2
which discards all elements where the function returns a truthy value.
Examples
iex> Enum.filter([1, 2, 3], fn x -> rem(x, 2) == 0 end) [2]
Keep in mind that filter
is not capable of filtering and transforming an element at the same time. If you would like to do so, consider using flat_map/2
. For example, if you want to convert all strings that represent an integer and discard the invalid one in one pass:
strings = ["1234", "abc", "12ab"] Enum.flat_map(strings, fn string -> case Integer.parse(string) do # transform to integer {int, _rest} -> [int] # skip the value :error -> [] end end)
find(enumerable, default \\ nil, fun)
find(t(), default(), (element() -> any())) :: element() | default()
Returns the first item for which fun
returns a truthy value. If no such item is found, returns default
.
Examples
iex> Enum.find([2, 4, 6], fn x -> rem(x, 2) == 1 end) nil iex> Enum.find([2, 4, 6], 0, fn x -> rem(x, 2) == 1 end) 0 iex> Enum.find([2, 3, 4], fn x -> rem(x, 2) == 1 end) 3
find_index(enumerable, fun)
find_index(t(), (element() -> any())) :: non_neg_integer() | nil
Similar to find/3
, but returns the index (zero-based) of the element instead of the element itself.
Examples
iex> Enum.find_index([2, 4, 6], fn x -> rem(x, 2) == 1 end) nil iex> Enum.find_index([2, 3, 4], fn x -> rem(x, 2) == 1 end) 1
find_value(enumerable, default \\ nil, fun)
find_value(t(), any(), (element() -> any())) :: any() | nil
Similar to find/3
, but returns the value of the function invocation instead of the element itself.
Examples
iex> Enum.find_value([2, 4, 6], fn x -> rem(x, 2) == 1 end) nil iex> Enum.find_value([2, 3, 4], fn x -> rem(x, 2) == 1 end) true iex> Enum.find_value([1, 2, 3], "no bools!", &is_boolean/1) "no bools!"
flat_map(enumerable, fun)
flat_map(t(), (element() -> t())) :: list()
Maps the given fun
over enumerable
and flattens the result.
This function returns a new enumerable built by appending the result of invoking fun
on each element of enumerable
together; conceptually, this is similar to a combination of map/2
and concat/1
.
Examples
iex> Enum.flat_map([:a, :b, :c], fn x -> [x, x] end) [:a, :a, :b, :b, :c, :c] iex> Enum.flat_map([{1, 3}, {4, 6}], fn {x, y} -> x..y end) [1, 2, 3, 4, 5, 6] iex> Enum.flat_map([:a, :b, :c], fn x -> [[x]] end) [[:a], [:b], [:c]]
flat_map_reduce(enumerable, acc, fun)
flat_map_reduce(t(), acc, fun) :: {[any()], any()} when fun: (element(), acc -> {t(), acc} | {:halt, acc}), acc: any()
Maps and reduces an enumerable
, flattening the given results (only one level deep).
It expects an accumulator and a function that receives each enumerable item, and must return a tuple containing a new enumerable (often a list) with the new accumulator or a tuple with :halt
as first element and the accumulator as second.
Examples
iex> enumerable = 1..100 iex> n = 3 iex> Enum.flat_map_reduce(enumerable, 0, fn x, acc -> ...> if acc < n, do: {[x], acc + 1}, else: {:halt, acc} ...> end) {[1, 2, 3], 3} iex> Enum.flat_map_reduce(1..5, 0, fn x, acc -> {[[x]], acc + x} end) {[[1], [2], [3], [4], [5]], 15}
group_by(enumerable, key_fun, value_fun \\ fn x -> x end)
group_by(t(), (element() -> any()), (element() -> any())) :: map()
Splits the enumerable
into groups based on key_fun
.
The result is a map where each key is given by key_fun
and each value is a list of elements given by value_fun
. The order of elements within each list is preserved from the enumerable
. However, like all maps, the resulting map is unordered.
Examples
iex> Enum.group_by(~w{ant buffalo cat dingo}, &String.length/1) %{3 => ["ant", "cat"], 5 => ["dingo"], 7 => ["buffalo"]} iex> Enum.group_by(~w{ant buffalo cat dingo}, &String.length/1, &String.first/1) %{3 => ["a", "c"], 5 => ["d"], 7 => ["b"]}
intersperse(enumerable, element)
intersperse(t(), element()) :: list()
Intersperses element
between each element of the enumeration.
Complexity: O(n).
Examples
iex> Enum.intersperse([1, 2, 3], 0) [1, 0, 2, 0, 3] iex> Enum.intersperse([1], 0) [1] iex> Enum.intersperse([], 0) []
into(enumerable, collectable)
into(Enumerable.t(), Collectable.t()) :: Collectable.t()
Inserts the given enumerable
into a collectable
.
Note that passing a non-empty list as the collectable
is deprecated. If you're collecting into a non-empty keyword list, consider using Keyword.merge/2
. If you're collecting into a non-empty list, consider something like to_list(enumerable) ++ collectable
.
Examples
iex> Enum.into([1, 2], []) [1, 2] iex> Enum.into([a: 1, b: 2], %{}) %{a: 1, b: 2} iex> Enum.into(%{a: 1}, %{b: 2}) %{a: 1, b: 2} iex> Enum.into([a: 1, a: 2], %{}) %{a: 2}
into(enumerable, collectable, transform)
into(Enumerable.t(), Collectable.t(), (term() -> term())) :: Collectable.t()
Inserts the given enumerable
into a collectable
according to the transformation function.
Examples
iex> Enum.into([2, 3], [3], fn x -> x * 3 end) [3, 6, 9] iex> Enum.into(%{a: 1, b: 2}, %{c: 3}, fn {k, v} -> {k, v * 2} end) %{a: 2, b: 4, c: 3}
join(enumerable, joiner \\ "")
join(t(), String.t()) :: String.t()
Joins the given enumerable
into a binary using joiner
as a separator.
If joiner
is not passed at all, it defaults to the empty binary.
All items in the enumerable
must be convertible to a binary, otherwise an error is raised.
Examples
iex> Enum.join([1, 2, 3]) "123" iex> Enum.join([1, 2, 3], " = ") "1 = 2 = 3"
map(enumerable, fun)
map(t(), (element() -> any())) :: list()
Returns a list where each item is the result of invoking fun
on each corresponding item of enumerable
.
For maps, the function expects a key-value tuple.
Examples
iex> Enum.map([1, 2, 3], fn x -> x * 2 end) [2, 4, 6] iex> Enum.map([a: 1, b: 2], fn {k, v} -> {k, -v} end) [a: -1, b: -2]
map_every(enumerable, nth, fun)
(since 1.4.0)map_every(t(), non_neg_integer(), (element() -> any())) :: list()
Returns a list of results of invoking fun
on every nth
item of enumerable
, starting with the first element.
The first item is always passed to the given function, unless nth
is 0
.
The second argument specifying every nth
item must be a non-negative integer.
If nth
is 0
, then enumerable
is directly converted to a list, without fun
being ever applied.
Examples
iex> Enum.map_every(1..10, 2, fn x -> x + 1000 end) [1001, 2, 1003, 4, 1005, 6, 1007, 8, 1009, 10] iex> Enum.map_every(1..10, 3, fn x -> x + 1000 end) [1001, 2, 3, 1004, 5, 6, 1007, 8, 9, 1010] iex> Enum.map_every(1..5, 0, fn x -> x + 1000 end) [1, 2, 3, 4, 5] iex> Enum.map_every([1, 2, 3], 1, fn x -> x + 1000 end) [1001, 1002, 1003]
map_join(enumerable, joiner \\ "", mapper)
map_join(t(), String.t(), (element() -> String.Chars.t())) :: String.t()
Maps and joins the given enumerable
in one pass.
joiner
can be either a binary or a list and the result will be of the same type as joiner
. If joiner
is not passed at all, it defaults to an empty binary.
All items returned from invoking the mapper
must be convertible to a binary, otherwise an error is raised.
Examples
iex> Enum.map_join([1, 2, 3], &(&1 * 2)) "246" iex> Enum.map_join([1, 2, 3], " = ", &(&1 * 2)) "2 = 4 = 6"
map_reduce(enumerable, acc, fun)
map_reduce(t(), any(), (element(), any() -> {any(), any()})) :: {any(), any()}
Invokes the given function to each item in the enumerable
to reduce it to a single element, while keeping an accumulator.
Returns a tuple where the first element is the mapped enumerable and the second one is the final accumulator.
The function, fun
, receives two arguments: the first one is the element, and the second one is the accumulator. fun
must return a tuple with two elements in the form of {result, accumulator}
.
For maps, the first tuple element must be a {key, value}
tuple.
Examples
iex> Enum.map_reduce([1, 2, 3], 0, fn x, acc -> {x * 2, x + acc} end) {[2, 4, 6], 6}
max(enumerable, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
max(t(), (() -> empty_result)) :: element() | empty_result when empty_result: any()
Returns the maximal element in the enumerable
according to Erlang's term ordering.
If multiple elements are considered maximal, the first one that was found is returned.
Calls the provided empty_fallback
function and returns its value if enumerable
is empty. The default empty_fallback
raises Enum.EmptyError
.
Examples
iex> Enum.max([1, 2, 3]) 3 iex> Enum.max([], fn -> 0 end) 0
The fact this function uses Erlang's term ordering means that the comparison is structural and not semantic. For example:
iex> Enum.max([~D[2017-03-31], ~D[2017-04-01]]) ~D[2017-03-31]
In the example above, max/1
returned March 31st instead of April 1st because the structural comparison compares the day before the year. This can be addressed by using max_by/1
and by relying on structures where the most significant digits come first. In this particular case, we can use Date.to_erl/1
to get a tuple representation with year, month and day fields:
iex> Enum.max_by([~D[2017-03-31], ~D[2017-04-01]], &Date.to_erl/1) ~D[2017-04-01]
For selecting a maximum value out of two consider using Kernel.max/2
.
max_by(enumerable, fun, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
max_by(t(), (element() -> any()), (() -> empty_result)) :: element() | empty_result when empty_result: any()
Returns the maximal element in the enumerable
as calculated by the given function.
If multiple elements are considered maximal, the first one that was found is returned.
Calls the provided empty_fallback
function and returns its value if enumerable
is empty. The default empty_fallback
raises Enum.EmptyError
.
Examples
iex> Enum.max_by(["a", "aa", "aaa"], fn x -> String.length(x) end) "aaa" iex> Enum.max_by(["a", "aa", "aaa", "b", "bbb"], &String.length/1) "aaa" iex> Enum.max_by([], &String.length/1, fn -> nil end) nil
member?(enumerable, element)
member?(t(), element()) :: boolean()
Checks if element
exists within the enumerable
.
Membership is tested with the match (===/2
) operator.
Examples
iex> Enum.member?(1..10, 5) true iex> Enum.member?(1..10, 5.0) false iex> Enum.member?([1.0, 2.0, 3.0], 2) false iex> Enum.member?([1.0, 2.0, 3.0], 2.000) true iex> Enum.member?([:a, :b, :c], :d) false
min(enumerable, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
min(t(), (() -> empty_result)) :: element() | empty_result when empty_result: any()
Returns the minimal element in the enumerable
according to Erlang's term ordering.
If multiple elements are considered minimal, the first one that was found is returned.
Calls the provided empty_fallback
function and returns its value if enumerable
is empty. The default empty_fallback
raises Enum.EmptyError
.
Examples
iex> Enum.min([1, 2, 3]) 1 iex> Enum.min([], fn -> 0 end) 0
The fact this function uses Erlang's term ordering means that the comparison is structural and not semantic. For example:
iex> Enum.min([~D[2017-03-31], ~D[2017-04-01]]) ~D[2017-04-01]
In the example above, min/1
returned April 1st instead of March 31st because the structural comparison compares the day before the year. This can be addressed by using min_by/1
and by relying on structures where the most significant digits come first. In this particular case, we can use Date.to_erl/1
to get a tuple representation with year, month and day fields:
iex> Enum.min_by([~D[2017-03-31], ~D[2017-04-01]], &Date.to_erl/1) ~D[2017-03-31]
For selecting a minimal value out of two consider using Kernel.min/2
.
min_by(enumerable, fun, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
min_by(t(), (element() -> any()), (() -> empty_result)) :: element() | empty_result when empty_result: any()
Returns the minimal element in the enumerable
as calculated by the given function.
If multiple elements are considered minimal, the first one that was found is returned.
Calls the provided empty_fallback
function and returns its value if enumerable
is empty. The default empty_fallback
raises Enum.EmptyError
.
Examples
iex> Enum.min_by(["a", "aa", "aaa"], fn x -> String.length(x) end) "a" iex> Enum.min_by(["a", "aa", "aaa", "b", "bbb"], &String.length/1) "a" iex> Enum.min_by([], &String.length/1, fn -> nil end) nil
min_max(enumerable, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
min_max(t(), (() -> empty_result)) :: {element(), element()} | empty_result when empty_result: any()
Returns a tuple with the minimal and the maximal elements in the enumerable according to Erlang's term ordering.
If multiple elements are considered maximal or minimal, the first one that was found is returned.
Calls the provided empty_fallback
function and returns its value if enumerable
is empty. The default empty_fallback
raises Enum.EmptyError
.
Examples
iex> Enum.min_max([2, 3, 1]) {1, 3} iex> Enum.min_max([], fn -> {nil, nil} end) {nil, nil}
min_max_by(enumerable, fun, empty_fallback \\ fn -> raise(Enum.EmptyError) end)
min_max_by(t(), (element() -> any()), (() -> empty_result)) :: {element(), element()} | empty_result when empty_result: any()
Returns a tuple with the minimal and the maximal elements in the enumerable as calculated by the given function.
If multiple elements are considered maximal or minimal, the first one that was found is returned.
Calls the provided empty_fallback
function and returns its value if enumerable
is empty. The default empty_fallback
raises Enum.EmptyError
.
Examples
iex> Enum.min_max_by(["aaa", "bb", "c"], fn x -> String.length(x) end) {"c", "aaa"} iex> Enum.min_max_by(["aaa", "a", "bb", "c", "ccc"], &String.length/1) {"a", "aaa"} iex> Enum.min_max_by([], &String.length/1, fn -> {nil, nil} end) {nil, nil}
random(enumerable)
random(t()) :: element()
Returns a random element of an enumerable
.
Raises Enum.EmptyError
if enumerable
is empty.
This function uses Erlang's :rand
module to calculate the random value. Check its documentation for setting a different random algorithm or a different seed.
The implementation is based on the reservoir sampling algorithm. It assumes that the sample being returned can fit into memory; the input enumerable
doesn't have to, as it is traversed just once.
If a range is passed into the function, this function will pick a random value between the range limits, without traversing the whole range (thus executing in constant time and constant memory).
Examples
# Although not necessary, let's seed the random algorithm iex> :rand.seed(:exsplus, {101, 102, 103}) iex> Enum.random([1, 2, 3]) 2 iex> Enum.random([1, 2, 3]) 1 iex> Enum.random(1..1_000) 776
reduce(enumerable, fun)
reduce(t(), (element(), any() -> any())) :: any()
Invokes fun
for each element in the enumerable
with the accumulator.
Raises Enum.EmptyError
if enumerable
is empty.
The first element of the enumerable
is used as the initial value of the accumulator. Then the function is invoked with the next element and the accumulator. The result returned by the function is used as the accumulator for the next iteration, recursively. When the enumerable
is done, the last accumulator is returned.
Since the first element of the enumerable is used as the initial value of the accumulator, fun
will only be executed n - 1
times where n
is the length of the enumerable. This function won't call the specified function for enumerables that are one-element long.
If you wish to use another value for the accumulator, use Enum.reduce/3
.
Examples
iex> Enum.reduce([1, 2, 3, 4], fn x, acc -> x * acc end) 24
reduce(enumerable, acc, fun)
reduce(t(), any(), (element(), any() -> any())) :: any()
Invokes fun
for each element in the enumerable
with the accumulator.
The initial value of the accumulator is acc
. The function is invoked for each element in the enumerable with the accumulator. The result returned by the function is used as the accumulator for the next iteration. The function returns the last accumulator.
Examples
iex> Enum.reduce([1, 2, 3], 0, fn x, acc -> x + acc end) 6
Reduce as a building block
Reduce (sometimes called fold
) is a basic building block in functional programming. Almost all of the functions in the Enum
module can be implemented on top of reduce. Those functions often rely on other operations, such as Enum.reverse/1
, which are optimized by the runtime.
For example, we could implement map/2
in terms of reduce/3
as follows:
def my_map(enumerable, fun) do enumerable |> Enum.reduce([], fn x, acc -> [fun.(x) | acc] end) |> Enum.reverse() end
In the example above, Enum.reduce/3
accumulates the result of each call to fun
into a list in reverse order, which is correctly ordered at the end by calling Enum.reverse/1
.
Implementing functions like map/2
, filter/2
and others are a good exercise for understanding the power behind Enum.reduce/3
. When an operation cannot be expressed by any of the functions in the Enum
module, developers will most likely resort to reduce/3
.
reduce_while(enumerable, acc, fun)
reduce_while( t(), any(), (element(), any() -> {:cont, any()} | {:halt, any()}) ) :: any()
Reduces enumerable
until fun
returns {:halt, term}
.
The return value for fun
is expected to be
-
{:cont, acc}
to continue the reduction withacc
as the new accumulator or -
{:halt, acc}
to halt the reduction
If fun
returns {:halt, acc}
the reduction is halted and the function returns acc
. Otherwise, if the enumerable is exhausted, the function returns the accumulator of the last {:cont, acc}
.
Examples
iex> Enum.reduce_while(1..100, 0, fn x, acc -> ...> if x < 5, do: {:cont, acc + x}, else: {:halt, acc} ...> end) 10 iex> Enum.reduce_while(1..100, 0, fn x, acc -> ...> if x > 0, do: {:cont, acc + x}, else: {:halt, acc} ...> end) 5050
reject(enumerable, fun)
reject(t(), (element() -> as_boolean(term()))) :: list()
Returns a list of elements in enumerable
excluding those for which the function fun
returns a truthy value.
See also filter/2
.
Examples
iex> Enum.reject([1, 2, 3], fn x -> rem(x, 2) == 0 end) [1, 3]
reverse(enumerable)
reverse(t()) :: list()
Returns a list of elements in enumerable
in reverse order.
Examples
iex> Enum.reverse([1, 2, 3]) [3, 2, 1]
reverse(enumerable, tail)
reverse(t(), t()) :: list()
Reverses the elements in enumerable
, appends the tail
, and returns it as a list.
This is an optimization for enumerable |> Enum.reverse() |> Enum.concat(tail)
.
Examples
iex> Enum.reverse([1, 2, 3], [4, 5, 6]) [3, 2, 1, 4, 5, 6]
reverse_slice(enumerable, start_index, count)
reverse_slice(t(), non_neg_integer(), non_neg_integer()) :: list()
Reverses the enumerable
in the range from initial start_index
through count
elements.
If count
is greater than the size of the rest of the enumerable
, then this function will reverse the rest of the enumerable.
Examples
iex> Enum.reverse_slice([1, 2, 3, 4, 5, 6], 2, 4) [1, 2, 6, 5, 4, 3]
scan(enumerable, fun)
scan(t(), (element(), any() -> any())) :: list()
Applies the given function to each element in the enumerable
, storing the result in a list and passing it as the accumulator for the next computation. Uses the first element in the enumerable
as the starting value.
Examples
iex> Enum.scan(1..5, &(&1 + &2)) [1, 3, 6, 10, 15]
scan(enumerable, acc, fun)
scan(t(), any(), (element(), any() -> any())) :: list()
Applies the given function to each element in the enumerable
, storing the result in a list and passing it as the accumulator for the next computation. Uses the given acc
as the starting value.
Examples
iex> Enum.scan(1..5, 0, &(&1 + &2)) [1, 3, 6, 10, 15]
shuffle(enumerable)
shuffle(t()) :: list()
Returns a list with the elements of enumerable
shuffled.
This function uses Erlang's :rand
module to calculate the random value. Check its documentation for setting a different random algorithm or a different seed.
Examples
# Although not necessary, let's seed the random algorithm iex> :rand.seed(:exsplus, {1, 2, 3}) iex> Enum.shuffle([1, 2, 3]) [2, 1, 3] iex> Enum.shuffle([1, 2, 3]) [2, 3, 1]
slice(enumerable, index_range)
(since 1.6.0)slice(t(), Range.t()) :: list()
Returns a subset list of the given enumerable
by index_range
.
index_range
must be a Range
. Given an enumerable
, it drops elements before index_range.first
(zero-base), then takes elements until element index_range.last
(inclusively).
Indexes are normalized, meaning that negative indexes will be counted from the end (e.g. -1
means the last element of the enumerable
).
If index_range.last
is out of bounds, then it is assigned as the index of the last element.
If the normalized index_range.first
is out of bounds of the given enumerable
, or this one is greater than the normalized index_range.last
, then []
is returned.
Examples
iex> Enum.slice(1..100, 5..10) [6, 7, 8, 9, 10, 11] iex> Enum.slice(1..10, 5..20) [6, 7, 8, 9, 10] # last five elements (negative indexes) iex> Enum.slice(1..30, -5..-1) [26, 27, 28, 29, 30] # last five elements (mixed positive and negative indexes) iex> Enum.slice(1..30, 25..-1) [26, 27, 28, 29, 30] # out of bounds iex> Enum.slice(1..10, 11..20) [] # index_range.first is greater than index_range.last iex> Enum.slice(1..10, 6..5) []
slice(enumerable, start_index, amount)
slice(t(), index(), non_neg_integer()) :: list()
Returns a subset list of the given enumerable
, from start_index
(zero-based) with amount
number of elements if available.
Given an enumerable
, it drops elements right before element start_index
, then takes amount
of elements, returning as many elements as possible if there are not enough elements.
It returns []
if amount
is 0
or if start_index
is out of bounds.
Examples
iex> Enum.slice(1..100, 5, 10) [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] # amount to take is greater than the number of elements iex> Enum.slice(1..10, 5, 100) [6, 7, 8, 9, 10] iex> Enum.slice(1..10, 5, 0) [] # out of bound start index iex> Enum.slice(1..10, 10, 5) [] # out of bound start index (negative) iex> Enum.slice(1..10, -11, 5) []
sort(enumerable)
sort(t()) :: list()
Sorts the enumerable
according to Erlang's term ordering.
Uses the merge sort algorithm.
Examples
iex> Enum.sort([3, 2, 1]) [1, 2, 3]
sort(enumerable, fun)
sort(t(), (element(), element() -> boolean())) :: list()
Sorts the enumerable
by the given function.
This function uses the merge sort algorithm. The given function should compare two arguments, and return true
if the first argument precedes the second one.
Examples
iex> Enum.sort([1, 2, 3], &(&1 >= &2)) [3, 2, 1]
The sorting algorithm will be stable as long as the given function returns true
for values considered equal:
iex> Enum.sort(["some", "kind", "of", "monster"], &(byte_size(&1) <= byte_size(&2))) ["of", "some", "kind", "monster"]
If the function does not return true
for equal values, the sorting is not stable and the order of equal terms may be shuffled. For example:
iex> Enum.sort(["some", "kind", "of", "monster"], &(byte_size(&1) < byte_size(&2))) ["of", "kind", "some", "monster"]
sort_by(enumerable, mapper, sorter \\ &<=/2)
sort_by( t(), (element() -> mapped_element), (mapped_element, mapped_element -> boolean()) ) :: list() when mapped_element: element()
Sorts the mapped results of the enumerable
according to the provided sorter
function.
This function maps each element of the enumerable
using the provided mapper
function. The enumerable is then sorted by the mapped elements using the sorter
function, which defaults to Kernel.<=/2
.
sort_by/3
differs from sort/2
in that it only calculates the comparison value for each element in the enumerable once instead of once for each element in each comparison. If the same function is being called on both elements, it's also more compact to use sort_by/3
.
Examples
Using the default sorter
of <=/2
:
iex> Enum.sort_by(["some", "kind", "of", "monster"], &byte_size/1) ["of", "some", "kind", "monster"]
Using a custom sorter
to override the order:
iex> Enum.sort_by(["some", "kind", "of", "monster"], &byte_size/1, &>=/2) ["monster", "some", "kind", "of"]
Sorting by multiple properties - first by size, then by first letter (this takes advantage of the fact that tuples are compared element-by-element):
iex> Enum.sort_by(["some", "kind", "of", "monster"], &{byte_size(&1), String.first(&1)}) ["of", "kind", "some", "monster"]
split(enumerable, count)
split(t(), integer()) :: {list(), list()}
Splits the enumerable
into two enumerables, leaving count
elements in the first one.
If count
is a negative number, it starts counting from the back to the beginning of the enumerable
.
Be aware that a negative count
implies the enumerable
will be enumerated twice: once to calculate the position, and a second time to do the actual splitting.
Examples
iex> Enum.split([1, 2, 3], 2) {[1, 2], [3]} iex> Enum.split([1, 2, 3], 10) {[1, 2, 3], []} iex> Enum.split([1, 2, 3], 0) {[], [1, 2, 3]} iex> Enum.split([1, 2, 3], -1) {[1, 2], [3]} iex> Enum.split([1, 2, 3], -5) {[], [1, 2, 3]}
split_while(enumerable, fun)
split_while(t(), (element() -> as_boolean(term()))) :: {list(), list()}
Splits enumerable in two at the position of the element for which fun
returns a falsy value (false
or nil
) for the first time.
It returns a two-element tuple with two lists of elements. The element that triggered the split is part of the second list.
Examples
iex> Enum.split_while([1, 2, 3, 4], fn x -> x < 3 end) {[1, 2], [3, 4]} iex> Enum.split_while([1, 2, 3, 4], fn x -> x < 0 end) {[], [1, 2, 3, 4]} iex> Enum.split_while([1, 2, 3, 4], fn x -> x > 0 end) {[1, 2, 3, 4], []}
split_with(enumerable, fun)
(since 1.4.0)split_with(t(), (element() -> any())) :: {list(), list()}
Splits the enumerable
in two lists according to the given function fun
.
Splits the given enumerable
in two lists by calling fun
with each element in the enumerable
as its only argument. Returns a tuple with the first list containing all the elements in enumerable
for which applying fun
returned a truthy value, and a second list with all the elements for which applying fun
returned a falsy value (false
or nil
).
The elements in both the returned lists are in the same relative order as they were in the original enumerable (if such enumerable was ordered, e.g., a list); see the examples below.
Examples
iex> Enum.split_with([5, 4, 3, 2, 1, 0], fn x -> rem(x, 2) == 0 end) {[4, 2, 0], [5, 3, 1]} iex> Enum.split_with(%{a: 1, b: -2, c: 1, d: -3}, fn {_k, v} -> v < 0 end) {[b: -2, d: -3], [a: 1, c: 1]} iex> Enum.split_with(%{a: 1, b: -2, c: 1, d: -3}, fn {_k, v} -> v > 50 end) {[], [a: 1, b: -2, c: 1, d: -3]} iex> Enum.split_with(%{}, fn {_k, v} -> v > 50 end) {[], []}
sum(enumerable)
sum(t()) :: number()
Returns the sum of all elements.
Raises ArithmeticError
if enumerable
contains a non-numeric value.
Examples
iex> Enum.sum([1, 2, 3]) 6
take(enumerable, amount)
take(t(), integer()) :: list()
Takes the first amount
items from the enumerable
.
If a negative amount
is given, the amount
of last values will be taken. The enumerable
will be enumerated once to retrieve the proper index and the remaining calculation is performed from the end.
Examples
iex> Enum.take([1, 2, 3], 2) [1, 2] iex> Enum.take([1, 2, 3], 10) [1, 2, 3] iex> Enum.take([1, 2, 3], 0) [] iex> Enum.take([1, 2, 3], -1) [3]
take_every(enumerable, nth)
take_every(t(), non_neg_integer()) :: list()
Returns a list of every nth
item in the enumerable
, starting with the first element.
The first item is always included, unless nth
is 0.
The second argument specifying every nth
item must be a non-negative integer.
Examples
iex> Enum.take_every(1..10, 2) [1, 3, 5, 7, 9] iex> Enum.take_every(1..10, 0) [] iex> Enum.take_every([1, 2, 3], 1) [1, 2, 3]
take_random(enumerable, count)
take_random(t(), non_neg_integer()) :: list()
Takes count
random items from enumerable
.
Notice this function will traverse the whole enumerable
to get the random sublist.
See random/1
for notes on implementation and random seed.
Examples
# Although not necessary, let's seed the random algorithm iex> :rand.seed(:exsplus, {1, 2, 3}) iex> Enum.take_random(1..10, 2) [5, 4] iex> Enum.take_random(?a..?z, 5) 'ipybz'
take_while(enumerable, fun)
take_while(t(), (element() -> as_boolean(term()))) :: list()
Takes the items from the beginning of the enumerable
while fun
returns a truthy value.
Examples
iex> Enum.take_while([1, 2, 3], fn x -> x < 3 end) [1, 2]
to_list(enumerable)
to_list(t()) :: [element()]
Converts enumerable
to a list.
Examples
iex> Enum.to_list(1..3) [1, 2, 3]
uniq(enumerable)
uniq(t()) :: list()
Enumerates the enumerable
, removing all duplicated elements.
Examples
iex> Enum.uniq([1, 2, 3, 3, 2, 1]) [1, 2, 3]
uniq_by(enumerable, fun)
uniq_by(t(), (element() -> term())) :: list()
Enumerates the enumerable
, by removing the elements for which function fun
returned duplicate items.
The function fun
maps every element to a term. Two elements are considered duplicates if the return value of fun
is equal for both of them.
The first occurrence of each element is kept.
Example
iex> Enum.uniq_by([{1, :x}, {2, :y}, {1, :z}], fn {x, _} -> x end) [{1, :x}, {2, :y}] iex> Enum.uniq_by([a: {:tea, 2}, b: {:tea, 2}, c: {:coffee, 1}], fn {_, y} -> y end) [a: {:tea, 2}, c: {:coffee, 1}]
unzip(enumerable)
unzip(t()) :: {[element()], [element()]}
Opposite of zip/2
. Extracts two-element tuples from the given enumerable
and groups them together.
It takes an enumerable
with items being two-element tuples and returns a tuple with two lists, each of which is formed by the first and second element of each tuple, respectively.
This function fails unless enumerable
is or can be converted into a list of tuples with exactly two elements in each tuple.
Examples
iex> Enum.unzip([{:a, 1}, {:b, 2}, {:c, 3}]) {[:a, :b, :c], [1, 2, 3]} iex> Enum.unzip(%{a: 1, b: 2}) {[:a, :b], [1, 2]}
with_index(enumerable, offset \\ 0)
with_index(t(), integer()) :: [{element(), index()}]
Returns the enumerable
with each element wrapped in a tuple alongside its index.
If an offset
is given, we will index from the given offset instead of from zero.
Examples
iex> Enum.with_index([:a, :b, :c]) [a: 0, b: 1, c: 2] iex> Enum.with_index([:a, :b, :c], 3) [a: 3, b: 4, c: 5]
zip(enumerables)
(since 1.4.0)zip([t()]) :: t()
zip(t()) :: t()
Zips corresponding elements from a finite collection of enumerables into one list of tuples.
The zipping finishes as soon as any enumerable in the given collection completes.
Examples
iex> Enum.zip([[1, 2, 3], [:a, :b, :c], ["foo", "bar", "baz"]]) [{1, :a, "foo"}, {2, :b, "bar"}, {3, :c, "baz"}] iex> Enum.zip([[1, 2, 3, 4, 5], [:a, :b, :c]]) [{1, :a}, {2, :b}, {3, :c}]
zip(enumerable1, enumerable2)
zip(t(), t()) :: [{any(), any()}]
Zips corresponding elements from two enumerables into one list of tuples.
The zipping finishes as soon as any enumerable completes.
Examples
iex> Enum.zip([1, 2, 3], [:a, :b, :c]) [{1, :a}, {2, :b}, {3, :c}] iex> Enum.zip([1, 2, 3, 4, 5], [:a, :b, :c]) [{1, :a}, {2, :b}, {3, :c}]
© 2012 Plataformatec
Licensed under the Apache License, Version 2.0.
https://hexdocs.pm/elixir/1.8.2/Enum.html