numpy.poly1d
-
class numpy.poly1d(c_or_r, r=False, variable=None)
[source] -
A one-dimensional polynomial class.
Note
This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in
numpy.polynomial
is preferred. A summary of the differences can be found in the transition guide.A convenience class, used to encapsulate “natural” operations on polynomials so that said operations may take on their customary form in code (see Examples).
- Parameters
-
-
c_or_rarray_like
-
The polynomial’s coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial’s roots (values where the polynomial evaluates to 0). For example,
poly1d([1, 2, 3])
returns an object that represents, whereas
poly1d([1, 2, 3], True)
returns one that represents.
-
rbool, optional
-
If True,
c_or_r
specifies the polynomial’s roots; the default is False. -
variablestr, optional
-
Changes the variable used when printing
p
fromx
tovariable
(see Examples).
-
Examples
Construct the polynomial
:
>>> p = np.poly1d([1, 2, 3]) >>> print(np.poly1d(p)) 2 1 x + 2 x + 3
Evaluate the polynomial at
:
>>> p(0.5) 4.25
Find the roots:
>>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary
These numbers in the previous line represent (0, 0) to machine precision
Show the coefficients:
>>> p.c array([1, 2, 3])
Display the order (the leading zero-coefficients are removed):
>>> p.order 2
Show the coefficient of the k-th power in the polynomial (which is equivalent to
p.c[-(i+1)]
):>>> p[1] 2
Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder):
>>> p * p poly1d([ 1, 4, 10, 12, 9])
>>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.]))
asarray(p)
gives the coefficient array, so polynomials can be used in all functions that accept arrays:>>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9])
>>> np.square(p) # square of individual coefficients array([1, 4, 9])
The variable used in the string representation of
p
can be modified, using thevariable
parameter:>>> p = np.poly1d([1,2,3], variable='z') >>> print(p) 2 1 z + 2 z + 3
Construct a polynomial from its roots:
>>> np.poly1d([1, 2], True) poly1d([ 1., -3., 2.])
This is the same polynomial as obtained by:
>>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2])
- Attributes
-
-
c
-
The polynomial coefficients
-
coef
-
The polynomial coefficients
-
coefficients
-
The polynomial coefficients
-
coeffs
-
The polynomial coefficients
-
o
-
The order or degree of the polynomial
-
order
-
The order or degree of the polynomial
-
r
-
The roots of the polynomial, where self(x) == 0
-
roots
-
The roots of the polynomial, where self(x) == 0
-
variable
-
The name of the polynomial variable
-
Methods
__call__
(val)Call self as a function.
deriv
([m])Return a derivative of this polynomial.
integ
([m, k])Return an antiderivative (indefinite integral) of this polynomial.
© 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.20/reference/generated/numpy.poly1d.html