numpy.ma.masked_object
- 
ma.masked_object(x, value, copy=True, shrink=True)[source] - 
Mask the array
xwhere the data are exactly equal to value.This function is similar to
masked_values, but only suitable for object arrays: for floating point, usemasked_valuesinstead.- Parameters
 - 
- 
xarray_like - 
Array to mask
 - 
valueobject - 
Comparison value
 - 
copy{True, False}, optional - 
Whether to return a copy of
x. - 
shrink{True, False}, optional - 
Whether to collapse a mask full of False to nomask
 
 - 
 - Returns
 - 
- 
resultMaskedArray - 
The result of masking
xwhere equal tovalue. 
 - 
 
See also
- 
 
masked_where - 
Mask where a condition is met.
 - 
 
masked_equal - 
Mask where equal to a given value (integers).
 - 
 
masked_values - 
Mask using floating point equality.
 
Examples
>>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> eat masked_array(data=[--, 'ham'], mask=[ True, False], fill_value='green_eggs', dtype=object) >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object)Note that
maskis set tonomaskif possible.>>> eat masked_array(data=['cheese', 'ham', 'pineapple'], mask=False, fill_value='green_eggs', dtype=object) 
    © 2005–2021 NumPy Developers
Licensed under the 3-clause BSD License.
    https://numpy.org/doc/1.21/reference/generated/numpy.ma.masked_object.html