pandas.DataFrame.to_numpy
- DataFrame.to_numpy(dtype=None, copy=False, na_value=NoDefault.no_default)[source]
-
Convert the DataFrame to a NumPy array.
By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are
float16andfloat32, the results dtype will befloat32. This may require copying data and coercing values, which may be expensive.- Parameters
-
- dtype:str or numpy.dtype, optional
-
The dtype to pass to
numpy.asarray(). - copy:bool, default False
-
Whether to ensure that the returned value is not a view on another array. Note that
copy=Falsedoes not ensure thatto_numpy()is no-copy. Rather,copy=Trueensure that a copy is made, even if not strictly necessary. - na_value:Any, optional
-
The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns.
New in version 1.1.0.
- Returns
-
- numpy.ndarray
See also
Series.to_numpy-
Similar method for Series.
Examples
>>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]])With heterogeneous data, the lowest common type will have to be used.
>>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]])For a mix of numeric and non-numeric types, the output array will have object dtype.
>>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)
© 2008–2021, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.3.4/reference/api/pandas.DataFrame.to_numpy.html