PostgreSQL specific aggregation functions
These functions are described in more detail in the PostgreSQL docs.
Note
All functions come without default aliases, so you must explicitly provide one. For example:
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
{'arr': [0, 1, 2]}
General-purpose aggregation functions
ArrayAgg
-
class ArrayAgg(expression, distinct=False, filter=None, **extra)[source] -
Returns a list of values, including nulls, concatenated into an array.
-
distinct -
New in Django 2.0.
An optional boolean argument that determines if array values will be distinct. Defaults to
False.
-
BitAnd
-
class BitAnd(expression, filter=None, **extra)[source] -
Returns an
intof the bitwiseANDof all non-null input values, orNoneif all values are null.
BitOr
-
class BitOr(expression, filter=None, **extra)[source] -
Returns an
intof the bitwiseORof all non-null input values, orNoneif all values are null.
BoolAnd
-
class BoolAnd(expression, filter=None, **extra)[source] -
Returns
True, if all input values are true,Noneif all values are null or if there are no values, otherwiseFalse.
BoolOr
-
class BoolOr(expression, filter=None, **extra)[source] -
Returns
Trueif at least one input value is true,Noneif all values are null or if there are no values, otherwiseFalse.
JSONBAgg
-
class JSONBAgg(expressions, filter=None, **extra)[source] -
New in Django 1.11.
Returns the input values as a
JSONarray. Requires PostgreSQL ≥ 9.5.
StringAgg
-
class StringAgg(expression, delimiter, distinct=False, filter=None)[source] -
Returns the input values concatenated into a string, separated by the
delimiterstring.-
delimiter -
Required argument. Needs to be a string.
-
distinct -
New in Django 1.11.
An optional boolean argument that determines if concatenated values will be distinct. Defaults to
False.
-
Aggregate functions for statistics
y and x
The arguments y and x for all these functions can be the name of a field or an expression returning a numeric data. Both are required.
Corr
-
class Corr(y, x, filter=None)[source] -
Returns the correlation coefficient as a
float, orNoneif there aren’t any matching rows.
CovarPop
-
class CovarPop(y, x, sample=False, filter=None)[source] -
Returns the population covariance as a
float, orNoneif there aren’t any matching rows.Has one optional argument:
-
sample -
By default
CovarPopreturns the general population covariance. However, ifsample=True, the return value will be the sample population covariance.
-
RegrAvgX
-
class RegrAvgX(y, x, filter=None)[source] -
Returns the average of the independent variable (
sum(x)/N) as afloat, orNoneif there aren’t any matching rows.
RegrAvgY
-
class RegrAvgY(y, x, filter=None)[source] -
Returns the average of the dependent variable (
sum(y)/N) as afloat, orNoneif there aren’t any matching rows.
RegrCount
-
class RegrCount(y, x, filter=None)[source] -
Returns an
intof the number of input rows in which both expressions are not null.
RegrIntercept
-
class RegrIntercept(y, x, filter=None)[source] -
Returns the y-intercept of the least-squares-fit linear equation determined by the
(x, y)pairs as afloat, orNoneif there aren’t any matching rows.
RegrR2
-
class RegrR2(y, x, filter=None)[source] -
Returns the square of the correlation coefficient as a
float, orNoneif there aren’t any matching rows.
RegrSlope
-
class RegrSlope(y, x, filter=None)[source] -
Returns the slope of the least-squares-fit linear equation determined by the
(x, y)pairs as afloat, orNoneif there aren’t any matching rows.
RegrSXX
-
class RegrSXX(y, x, filter=None)[source] -
Returns
sum(x^2) - sum(x)^2/N(“sum of squares” of the independent variable) as afloat, orNoneif there aren’t any matching rows.
RegrSXY
-
class RegrSXY(y, x, filter=None)[source] -
Returns
sum(x*y) - sum(x) * sum(y)/N(“sum of products” of independent times dependent variable) as afloat, orNoneif there aren’t any matching rows.
RegrSYY
-
class RegrSYY(y, x, filter=None)[source] -
Returns
sum(y^2) - sum(y)^2/N(“sum of squares” of the dependent variable) as afloat, orNoneif there aren’t any matching rows.
Usage examples
We will use this example table:
| FIELD1 | FIELD2 | FIELD3 | |--------|--------|--------| | foo | 1 | 13 | | bar | 2 | (null) | | test | 3 | 13 |
Here’s some examples of some of the general-purpose aggregation functions:
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
{'result': 'foo;bar;test'}
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
{'result': [1, 2, 3]}
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
{'result': ['foo', 'bar', 'test']}
The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you can read about this, for example, at wikipedia):
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
{'count': 2}
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
... avgy=RegrAvgY(y='field3', x='field2'))
{'avgx': 2, 'avgy': 13}
© Django Software Foundation and individual contributors
Licensed under the BSD License.
https://docs.djangoproject.com/en/2.0/ref/contrib/postgres/aggregates/