pandas.CategoricalIndex
-
class pandas.CategoricalIndex[source] -
Index based on an underlying
Categorical.CategoricalIndex, like Categorical, can only take on a limited, and usually fixed, number of possible values (
categories). Also, like Categorical, it might have an order, but numerical operations (additions, divisions, …) are not possible.Parameters: -
data : array-like (1-dimensional) -
The values of the categorical. If
categoriesare given, values not incategorieswill be replaced with NaN. -
categories : index-like, optional -
The categories for the categorical. Items need to be unique. If the categories are not given here (and also not in
dtype), they will be inferred from thedata. -
ordered : bool, optional -
Whether or not this categorical is treated as an ordered categorical. If not given here or in
dtype, the resulting categorical will be unordered. -
dtype : CategoricalDtype or the string “category”, optional -
If
CategoricalDtype, cannot be used together withcategoriesorordered.New in version 0.21.0.
-
copy : bool, default False -
Make a copy of input ndarray.
-
name : object, optional -
Name to be stored in the index.
Raises: - ValueError
-
If the categories do not validate.
- TypeError
-
If an explicit
ordered=Trueis given but nocategoriesand thevaluesare not sortable.
See also
-
Index - The base pandas Index type.
-
Categorical - A categorical array.
-
CategoricalDtype - Type for categorical data.
Notes
See the user guide for more.
Examples
>>> pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c']) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa
CategoricalIndexcan also be instantiated from aCategorical:>>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) >>> pd.CategoricalIndex(c) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa
Ordered
CategoricalIndexcan have a min and max value.>>> ci = pd.CategoricalIndex(['a','b','c','a','b','c'], ordered=True, ... categories=['c', 'b', 'a']) >>> ci CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['c', 'b', 'a'], ordered=True, dtype='category') # noqa >>> ci.min() 'c'
Attributes
codes categories ordered Methods
rename_categories(self, \*args, \*\*kwargs)Rename categories. reorder_categories(self, \*args, \*\*kwargs)Reorder categories as specified in new_categories. add_categories(self, \*args, \*\*kwargs)Add new categories. remove_categories(self, \*args, \*\*kwargs)Remove the specified categories. remove_unused_categories(self, \*args, …)Remove categories which are not used. set_categories(self, \*args, \*\*kwargs)Set the categories to the specified new_categories. as_ordered(self, \*args, \*\*kwargs)Set the Categorical to be ordered. as_unordered(self, \*args, \*\*kwargs)Set the Categorical to be unordered. map(self, mapper)Map values using input correspondence (a dict, Series, or function). -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.CategoricalIndex.html