Pandas arrays
 For most data types, pandas uses NumPy arrays as the concrete objects contained with a Index, Series, or DataFrame.
 For some data types, pandas extends NumPy’s type system.
  Pandas and third-party libraries can extend NumPy’s type system (see Extension types). The top-level array() method can be used to create a new array, which may be stored in a Series, Index, or as a column in a DataFrame.
    
| array(data, dtype, numpy.dtype, …) | Create an array. | 
  
  Datetime data
 NumPy cannot natively represent timezone-aware datetimes. Pandas supports this with the arrays.DatetimeArray extension array, which can hold timezone-naive or timezone-aware values.
 Timestamp, a subclass of datetime.datetime, is pandas’ scalar type for timezone-naive or timezone-aware datetime data.
    
| Timestamp | Pandas replacement for python datetime.datetime object. | 
  
  Properties
    Methods
    
| Timestamp.astimezone(self, tz) | Convert tz-aware Timestamp to another time zone. | 
 
| Timestamp.ceil(self, freq[, ambiguous, …]) | return a new Timestamp ceiled to this resolution | 
 
| Timestamp.combine(date, time) | date, time -> datetime with same date and time fields | 
 
| Timestamp.ctime() | Return ctime() style string. | 
 
| Timestamp.date() | Return date object with same year, month and day. | 
 
| Timestamp.day_name(self[, locale]) | Return the day name of the Timestamp with specified locale. | 
 
| Timestamp.dst() | Return self.tzinfo.dst(self). | 
 
| Timestamp.floor(self, freq[, ambiguous, …]) | return a new Timestamp floored to this resolution | 
 
| Timestamp.freq |  | 
 
| Timestamp.freqstr | Return the total number of days in the month. | 
 
| Timestamp.fromordinal(ordinal[, freq, tz]) | passed an ordinal, translate and convert to a ts note: by definition there cannot be any tz info on the ordinal itself | 
 
| Timestamp.fromtimestamp(ts) | timestamp[, tz] -> tz’s local time from POSIX timestamp. | 
 
| Timestamp.isocalendar() | Return a 3-tuple containing ISO year, week number, and weekday. | 
 
| Timestamp.isoformat(self[, sep]) |  | 
 
| Timestamp.isoweekday() | Return the day of the week represented by the date. | 
 
| Timestamp.month_name(self[, locale]) | Return the month name of the Timestamp with specified locale. | 
 
| Timestamp.normalize(self) | Normalize Timestamp to midnight, preserving tz information. | 
 
| Timestamp.now([tz]) | Return new Timestamp object representing current time local to tz. | 
 
| Timestamp.replace(self[, year, month, day, …]) | implements datetime.replace, handles nanoseconds | 
 
| Timestamp.round(self, freq[, ambiguous, …]) | Round the Timestamp to the specified resolution | 
 
| Timestamp.strftime() | format -> strftime() style string. | 
 
| Timestamp.strptime(string, format) | Function is not implemented. | 
 
| Timestamp.time() | Return time object with same time but with tzinfo=None. | 
 
| Timestamp.timestamp() | Return POSIX timestamp as float. | 
 
| Timestamp.timetuple() | Return time tuple, compatible with time.localtime(). | 
 
| Timestamp.timetz() | Return time object with same time and tzinfo. | 
 
| Timestamp.to_datetime64() | Return a numpy.datetime64 object with ‘ns’ precision. | 
 
| Timestamp.to_numpy() | Convert the Timestamp to a NumPy datetime64. | 
 
| Timestamp.to_julian_date(self) | Convert TimeStamp to a Julian Date. | 
 
| Timestamp.to_period(self[, freq]) | Return an period of which this timestamp is an observation. | 
 
| Timestamp.to_pydatetime() | Convert a Timestamp object to a native Python datetime object. | 
 
| Timestamp.today(cls[, tz]) | Return the current time in the local timezone. | 
 
| Timestamp.toordinal() | Return proleptic Gregorian ordinal. | 
 
| Timestamp.tz_convert(self, tz) | Convert tz-aware Timestamp to another time zone. | 
 
| Timestamp.tz_localize(self, tz[, ambiguous, …]) | Convert naive Timestamp to local time zone, or remove timezone from tz-aware Timestamp. | 
 
| Timestamp.tzname() | Return self.tzinfo.tzname(self). | 
 
| Timestamp.utcfromtimestamp(ts) | Construct a naive UTC datetime from a POSIX timestamp. | 
 
| Timestamp.utcnow() | Return a new Timestamp representing UTC day and time. | 
 
| Timestamp.utcoffset() | Return self.tzinfo.utcoffset(self). | 
 
| Timestamp.utctimetuple() | Return UTC time tuple, compatible with time.localtime(). | 
 
| Timestamp.weekday() | Return the day of the week represented by the date. | 
  
 A collection of timestamps may be stored in a arrays.DatetimeArray. For timezone-aware data, the .dtype of a DatetimeArray is a DatetimeTZDtype. For timezone-naive data, np.dtype("datetime64[ns]") is used.
 If the data are tz-aware, then every value in the array must have the same timezone.
    
| arrays.DatetimeArray(values[, dtype, freq, copy]) | Pandas ExtensionArray for tz-naive or tz-aware datetime data. | 
  
    
| DatetimeTZDtype([unit, tz]) | An ExtensionDtype for timezone-aware datetime data. | 
  
    Timedelta data
 NumPy can natively represent timedeltas. Pandas provides Timedelta for symmetry with Timestamp.
    
| Timedelta | Represents a duration, the difference between two dates or times. | 
  
  Properties
    Methods
  A collection of timedeltas may be stored in a TimedeltaArray.
     Timespan data
 Pandas represents spans of times as Period objects.
   Period
    
| Period | Represents a period of time | 
  
  Properties
    Methods
    
| Period.asfreq() | Convert Period to desired frequency, either at the start or end of the interval | 
 
| Period.now() |  | 
 
| Period.strftime() | Returns the string representation of the Period, depending on the selectedfmt. | 
 
| Period.to_timestamp() | Return the Timestamp representation of the Period at the target frequency at the specified end (how) of the Period | 
  
 A collection of timedeltas may be stored in a arrays.PeriodArray. Every period in a PeriodArray must have the same freq.
    
| arrays.PeriodArray(values[, freq, dtype, copy]) | Pandas ExtensionArray for storing Period data. | 
  
     Interval data
 Arbitrary intervals can be represented as Interval objects.
    
| Interval | Immutable object implementing an Interval, a bounded slice-like interval. | 
  
  Properties
  A collection of intervals may be stored in an arrays.IntervalArray.
      Nullable integer
 numpy.ndarray cannot natively represent integer-data with missing values. Pandas provides this through arrays.IntegerArray.
     
| Int8Dtype | An ExtensionDtype for int8 integer data. | 
 
| Int16Dtype | An ExtensionDtype for int16 integer data. | 
 
| Int32Dtype | An ExtensionDtype for int32 integer data. | 
 
| Int64Dtype | An ExtensionDtype for int64 integer data. | 
 
| UInt8Dtype | An ExtensionDtype for uint8 integer data. | 
 
| UInt16Dtype | An ExtensionDtype for uint16 integer data. | 
 
| UInt32Dtype | An ExtensionDtype for uint32 integer data. | 
 
| UInt64Dtype | An ExtensionDtype for uint64 integer data. | 
  
   Categorical data
 Pandas defines a custom data type for representing data that can take only a limited, fixed set of values. The dtype of a Categorical can be described by a pandas.api.types.CategoricalDtype.
    
| CategoricalDtype([categories]) | Type for categorical data with the categories and orderedness. | 
  
  Categorical data can be stored in a pandas.Categorical
    
| Categorical(values[, categories, ordered, …]) | Represent a categorical variable in classic R / S-plus fashion. | 
  
 The alternative Categorical.from_codes() constructor can be used when you have the categories and integer codes already:
  The dtype information is available on the Categorical
  np.asarray(categorical) works by implementing the array interface. Be aware, that this converts the Categorical back to a NumPy array, so categories and order information is not preserved!
  A Categorical can be stored in a Series or DataFrame. To create a Series of dtype category, use cat = s.astype(dtype) or Series(..., dtype=dtype) where dtype is either
  - the string 'category'
- an instance of CategoricalDtype.
If the Series is of dtype CategoricalDtype, Series.cat can be used to change the categorical data. See Categorical accessor for more.
   Sparse data
 Data where a single value is repeated many times (e.g. 0 or NaN) may be stored efficiently as a SparseArray.
    
| SparseArray(data[, sparse_index, index, …]) | An ExtensionArray for storing sparse data. | 
  
  The Series.sparse accessor may be used to access sparse-specific attributes and methods if the Series contains sparse values. See Sparse accessor for more.