varimax Rotation Methods for Factor Analysis
 Description
These functions ‘rotate’ loading matrices in factor analysis.
Usage
varimax(x, normalize = TRUE, eps = 1e-5) promax(x, m = 4)
Arguments
| x | A loadings matrix, with p rows and k < p columns | 
| m | The power used the target for  | 
| normalize | logical. Should Kaiser normalization be performed? If so the rows of  | 
| eps | The tolerance for stopping: the relative change in the sum of singular values. | 
Details
These seek a ‘rotation’ of the factors x %*% T that aims to clarify the structure of the loadings matrix. The matrix T is a rotation (possibly with reflection) for varimax, but a general linear transformation for promax, with the variance of the factors being preserved. 
Value
A list with components
| loadings | The ‘rotated’ loadings matrix,  | 
| rotmat | The ‘rotation’ matrix. | 
References
Hendrickson, A. E. and White, P. O. (1964). Promax: a quick method for rotation to orthogonal oblique structure. British Journal of Statistical Psychology, 17, 65–70. doi: 10.1111/j.2044-8317.1964.tb00244.x.
Horst, P. (1965). Factor Analysis of Data Matrices. Holt, Rinehart and Winston. Chapter 10.
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200. doi: 10.1007/BF02289233.
Lawley, D. N. and Maxwell, A. E. (1971). Factor Analysis as a Statistical Method, second edition. Butterworths.
See Also
Examples
## varimax with normalize = TRUE is the default fa <- factanal( ~., 2, data = swiss) varimax(loadings(fa), normalize = FALSE) promax(loadings(fa))
    Copyright (©) 1999–2012 R Foundation for Statistical Computing.
Licensed under the GNU General Public License.