statsmodels.tsa.statespace.tools.unconstrain_stationary_multivariate
-
statsmodels.tsa.statespace.tools.unconstrain_stationary_multivariate(constrained, error_variance)[source] -
Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer
Parameters: -
constrained (array or list) – Constrained parameters of, e.g., an autoregressive or moving average component, to be transformed to arbitrary parameters used by the optimizer. If a list, should be a list of length
order, where each element is an array sizedk_endogxk_endog. If an array, should be the coefficient matrices horizontally concatenated and sizedk_endogxk_endog * order. -
error_variance (array) – The variance / covariance matrix of the error term. Should be sized
k_endogxk_endog. This is used as input in the algorithm even if is not transformed by it (whentransform_varianceis False).
Returns: unconstrained – Unconstrained parameters used by the optimizer, to be transformed to stationary coefficients of, e.g., an autoregressive or moving average component. Will match the type of the passed
constrainedvariable (so if a list was passed, a list will be returned).Return type: array
Notes
Uses the list representation internally, even if an array is passed.
References
[*] Ansley, Craig F., and Robert Kohn. 1986. “A Note on Reparameterizing a Vector Autoregressive Moving Average Model to Enforce Stationarity.” Journal of Statistical Computation and Simulation 24 (2): 99-106. -
constrained (array or list) – Constrained parameters of, e.g., an autoregressive or moving average component, to be transformed to arbitrary parameters used by the optimizer. If a list, should be a list of length
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.tools.unconstrain_stationary_multivariate.html