numpy.allclose
- 
numpy.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)[source]
- 
Returns True if two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference ( rtol* abs(b)) and the absolute differenceatolare added together to compare against the absolute difference betweenaandb.If either array contains one or more NaNs, False is returned. Infs are treated as equal if they are in the same place and of the same sign in both arrays. Parameters: a, b : array_like Input arrays to compare. rtol : float The relative tolerance parameter (see Notes). atol : float The absolute tolerance parameter (see Notes). equal_nan : bool Whether to compare NaN’s as equal. If True, NaN’s in awill be considered equal to NaN’s inbin the output array.New in version 1.10.0. Returns: allclose : bool Returns True if the two arrays are equal within the given tolerance; False otherwise. NotesIf the following equation is element-wise True, then allclose returns True. absolute(a-b) <= (atol+rtol* absolute(b))The above equation is not symmetric in aandb, so thatallclose(a, b)might be different fromallclose(b, a)in some rare cases.Examples>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8]) False >>> np.allclose([1e10,1e-8], [1.00001e10,1e-9]) True >>> np.allclose([1e10,1e-8], [1.0001e10,1e-9]) False >>> np.allclose([1.0, np.nan], [1.0, np.nan]) False >>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) True 
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.allclose.html