numpy.mask_indices
- 
numpy.mask_indices(n, mask_func, k=0)[source]
- 
Return the indices to access (n, n) arrays, given a masking function. Assume mask_funcis a function that, for a square array a of size(n, n)with a possible offset argumentk, when called asmask_func(a, k)returns a new array with zeros in certain locations (functions liketriuortrildo precisely this). Then this function returns the indices where the non-zero values would be located.Parameters: n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of triu,tril. That is,mask_func(x, k)returns a boolean array, shaped likex.kis an optional argument to the function.k : scalar An optional argument which is passed through to mask_func. Functions liketriu,triltake a second argument that is interpreted as an offset.Returns: indices : tuple of arrays. The narrays of indices corresponding to the locations wheremask_func(np.ones((n, n)), k)is True.See also NotesNew in version 1.4.0. ExamplesThese are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if ais a 3x3 array:>>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8])An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) 
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.mask_indices.html