numpy.allclose
-
numpy.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)[source] -
Returns True if two arrays are element-wise equal within a tolerance.
The tolerance values are positive, typically very small numbers. The relative difference (
rtol* abs(b)) and the absolute differenceatolare added together to compare against the absolute difference betweenaandb.If either array contains one or more NaNs, False is returned. Infs are treated as equal if they are in the same place and of the same sign in both arrays.
Parameters: a, b : array_like
Input arrays to compare.
rtol : float
The relative tolerance parameter (see Notes).
atol : float
The absolute tolerance parameter (see Notes).
equal_nan : bool
Whether to compare NaN’s as equal. If True, NaN’s in
awill be considered equal to NaN’s inbin the output array.New in version 1.10.0.
Returns: allclose : bool
Returns True if the two arrays are equal within the given tolerance; False otherwise.
Notes
If the following equation is element-wise True, then allclose returns True.
absolute(a-b) <= (atol+rtol* absolute(b))The above equation is not symmetric in
aandb, so thatallclose(a, b)might be different fromallclose(b, a)in some rare cases.The comparison of
aandbuses standard broadcasting, which means thataandbneed not have the same shape in order forallclose(a, b)to evaluate to True. The same is true forequalbut notarray_equal.Examples
>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8]) False >>> np.allclose([1e10,1e-8], [1.00001e10,1e-9]) True >>> np.allclose([1e10,1e-8], [1.0001e10,1e-9]) False >>> np.allclose([1.0, np.nan], [1.0, np.nan]) False >>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) True
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.14.5/reference/generated/numpy.allclose.html