numpy.asarray
- 
numpy.asarray(a, dtype=None, order=None)[source] - 
Convert the input to an array.
- Parameters
 - 
- 
aarray_like - 
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
 - 
dtypedata-type, optional - 
By default, the data-type is inferred from the input data.
 - 
order{‘C’, ‘F’}, optional - 
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’.
 
 - 
 - Returns
 - 
- 
outndarray - 
Array interpretation of
a. No copy is performed if the input is already an ndarray with matching dtype and order. Ifais a subclass of ndarray, a base class ndarray is returned. 
 - 
 
See also
- 
 
asanyarray - 
Similar function which passes through subclasses.
 - 
 
ascontiguousarray - 
Convert input to a contiguous array.
 - 
 
asfarray - 
Convert input to a floating point ndarray.
 - 
 
asfortranarray - 
Convert input to an ndarray with column-major memory order.
 - 
 
asarray_chkfinite - 
Similar function which checks input for NaNs and Infs.
 - 
 
fromiter - 
Create an array from an iterator.
 - 
 
fromfunction - 
Construct an array by executing a function on grid positions.
 
Examples
Convert a list into an array:
>>> a = [1, 2] >>> np.asarray(a) array([1, 2])
Existing arrays are not copied:
>>> a = np.array([1, 2]) >>> np.asarray(a) is a True
If
dtypeis set, array is copied only if dtype does not match:>>> a = np.array([1, 2], dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False
Contrary to
asanyarray, ndarray subclasses are not passed through:>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True
 
    © 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
    https://numpy.org/doc/1.18/reference/generated/numpy.asarray.html