numpy.concatenate
- 
numpy.concatenate((a1, a2, ...), axis=0, out=None) - 
Join a sequence of arrays along an existing axis.
- Parameters
 - 
- 
a1, a2, …sequence of array_like - 
The arrays must have the same shape, except in the dimension corresponding to
axis(the first, by default). - 
axisint, optional - 
The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0.
 - 
outndarray, optional - 
If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified.
 
 - 
 - Returns
 - 
- 
resndarray - 
The concatenated array.
 
 - 
 
See also
- 
 
ma.concatenate - 
Concatenate function that preserves input masks.
 - 
 
array_split - 
Split an array into multiple sub-arrays of equal or near-equal size.
 - 
 
split - 
Split array into a list of multiple sub-arrays of equal size.
 - 
 
hsplit - 
Split array into multiple sub-arrays horizontally (column wise)
 - 
 
vsplit - 
Split array into multiple sub-arrays vertically (row wise)
 - 
 
dsplit - 
Split array into multiple sub-arrays along the 3rd axis (depth).
 - 
 
stack - 
Stack a sequence of arrays along a new axis.
 - 
 
hstack - 
Stack arrays in sequence horizontally (column wise)
 - 
 
vstack - 
Stack arrays in sequence vertically (row wise)
 - 
 
dstack - 
Stack arrays in sequence depth wise (along third dimension)
 - 
 
block - 
Assemble arrays from blocks.
 
Notes
When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead.
Examples
>>> a = np.array([[1, 2], [3, 4]]) >>> b = np.array([[5, 6]]) >>> np.concatenate((a, b), axis=0) array([[1, 2], [3, 4], [5, 6]]) >>> np.concatenate((a, b.T), axis=1) array([[1, 2, 5], [3, 4, 6]]) >>> np.concatenate((a, b), axis=None) array([1, 2, 3, 4, 5, 6])This function will not preserve masking of MaskedArray inputs.
>>> a = np.ma.arange(3) >>> a[1] = np.ma.masked >>> b = np.arange(2, 5) >>> a masked_array(data=[0, --, 2], mask=[False, True, False], fill_value=999999) >>> b array([2, 3, 4]) >>> np.concatenate([a, b]) masked_array(data=[0, 1, 2, 2, 3, 4], mask=False, fill_value=999999) >>> np.ma.concatenate([a, b]) masked_array(data=[0, --, 2, 2, 3, 4], mask=[False, True, False, False, False, False], fill_value=999999) 
    © 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
    https://numpy.org/doc/1.18/reference/generated/numpy.concatenate.html