numpy.ma.mask_rows
- 
numpy.ma.mask_rows(a, axis=<no value>)[source] - 
Mask rows of a 2D array that contain masked values.
This function is a shortcut to
mask_rowcolswithaxisequal to 0.See also
- 
 
mask_rowcols - 
Mask rows and/or columns of a 2D array.
 - 
 
masked_where - 
Mask where a condition is met.
 
Examples
>>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1)>>> ma.mask_rows(a) masked_array( data=[[0, 0, 0], [--, --, --], [0, 0, 0]], mask=[[False, False, False], [ True, True, True], [False, False, False]], fill_value=1) - 
 
 
    © 2005–2020 NumPy Developers
Licensed under the 3-clause BSD License.
    https://numpy.org/doc/1.18/reference/generated/numpy.ma.mask_rows.html