matplotlib.colors.Colormap
- 
class matplotlib.colors.Colormap(name, N=256)[source]
- 
Bases: objectBaseclass for all scalar to RGBA mappings. Typically, Colormap instances are used to convert data values (floats) from the interval [0, 1]to the RGBA color that the respective Colormap represents. For scaling of data into the[0, 1]interval seematplotlib.colors.Normalize. Subclasses ofmatplotlib.cm.ScalarMappablemake heavy use of thisdata -> normalize -> map-to-colorprocessing chain.Parameters: - 
namestr
- 
The name of the colormap. 
- 
Nint
- 
The number of rgb quantization levels. 
 - 
__call__(self, X, alpha=None, bytes=False)[source]
- 
Parameters: - 
Xfloat or int, ndarray or scalar
- 
The data value(s) to convert to RGBA. For floats, X should be in the interval [0.0, 1.0]to return the RGBA valuesX*100percent along the Colormap line. For integers, X should be in the interval[0, Colormap.N)to return RGBA values indexed from the Colormap with indexX.
- 
alphafloat, None
- 
Alpha must be a scalar between 0 and 1, or None. 
- 
bytesbool
- 
If False (default), the returned RGBA values will be floats in the interval [0, 1]otherwise they will be uint8s in the interval[0, 255].
 Returns: - Tuple of RGBA values if X is scalar, otherwise an array of
- 
RGBA values with a shape of X.shape + (4, ).
 
- 
 - 
__copy__(self)[source]
 - 
__dict__ = mappingproxy({'__module__': 'matplotlib.colors', '__doc__': '\n Baseclass for all scalar to RGBA mappings.\n\n Typically, Colormap instances are used to convert data values (floats)\n from the interval ``[0, 1]`` to the RGBA color that the respective\n Colormap represents. For scaling of data into the ``[0, 1]`` interval see\n `matplotlib.colors.Normalize`. Subclasses of `matplotlib.cm.ScalarMappable`\n make heavy use of this ``data -> normalize -> map-to-color`` processing\n chain.\n ', '__init__': <function Colormap.__init__>, '__call__': <function Colormap.__call__>, '__copy__': <function Colormap.__copy__>, 'set_bad': <function Colormap.set_bad>, 'set_under': <function Colormap.set_under>, 'set_over': <function Colormap.set_over>, '_set_extremes': <function Colormap._set_extremes>, '_init': <function Colormap._init>, 'is_gray': <function Colormap.is_gray>, '_resample': <function Colormap._resample>, 'reversed': <function Colormap.reversed>, '__dict__': <attribute '__dict__' of 'Colormap' objects>, '__weakref__': <attribute '__weakref__' of 'Colormap' objects>})
 - 
__init__(self, name, N=256)[source]
- 
Parameters: - 
namestr
- 
The name of the colormap. 
- 
Nint
- 
The number of rgb quantization levels. 
 
- 
 - 
__module__ = 'matplotlib.colors'
 - 
__weakref__
- 
list of weak references to the object (if defined) 
 - 
colorbar_extend
- 
When this colormap exists on a scalar mappable and colorbar_extend is not False, colorbar creation will pick up colorbar_extendas the default value for theextendkeyword in thematplotlib.colorbar.Colorbarconstructor.
 - 
is_gray(self)[source]
 - 
reversed(self, name=None)[source]
- 
Return a reversed instance of the Colormap. Note This function is not implemented for base class. Parameters: - 
namestr, optional
- 
The name for the reversed colormap. If it's None the name will be the name of the parent colormap + "_r". 
 
- 
 - 
set_bad(self, color='k', alpha=None)[source]
- 
Set the color for masked values. 
 - 
set_over(self, color='k', alpha=None)[source]
- 
Set the color for high out-of-range values when norm.clip = False.
 - 
set_under(self, color='k', alpha=None)[source]
- 
Set the color for low out-of-range values when norm.clip = False.
 
- 
Examples using matplotlib.colors.Colormap
 
    © 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
    https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.colors.Colormap.html