matplotlib.colors.Normalize
- 
class matplotlib.colors.Normalize(vmin=None, vmax=None, clip=False)[source]
- 
Bases: objectA class which, when called, linearly normalizes data into the [0.0, 1.0]interval.Parameters: - 
vmin, vmaxfloat or None
- 
If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e., __call__(A)callsautoscale_None(A).
- 
clipbool, default: False
- 
If Truevalues falling outside the range[vmin, vmax], are mapped to 0 or 1, whichever is closer, and masked values are set to 1. IfFalsemasked values remain masked.Clipping silently defeats the purpose of setting the over, under, and masked colors in a colormap, so it is likely to lead to surprises; therefore the default is clip=False.
 NotesReturns 0 if vmin == vmax.- 
__call__(self, value, clip=None)[source]
- 
Normalize value data in the [vmin, vmax]interval into the[0.0, 1.0]interval and return it.Parameters: - value
- 
Data to normalize. 
- 
clipbool
- 
If None, defaults toself.clip(which defaults toFalse).
 NotesIf not already initialized, self.vminandself.vmaxare initialized usingself.autoscale_None(value).
 - 
__dict__ = mappingproxy({'__module__': 'matplotlib.colors', '__doc__': '\n A class which, when called, linearly normalizes data into the\n ``[0.0, 1.0]`` interval.\n ', '__init__': <function Normalize.__init__>, 'process_value': <staticmethod object>, '__call__': <function Normalize.__call__>, 'inverse': <function Normalize.inverse>, 'autoscale': <function Normalize.autoscale>, 'autoscale_None': <function Normalize.autoscale_None>, 'scaled': <function Normalize.scaled>, '__dict__': <attribute '__dict__' of 'Normalize' objects>, '__weakref__': <attribute '__weakref__' of 'Normalize' objects>, '__slotnames__': []})
 - 
__init__(self, vmin=None, vmax=None, clip=False)[source]
- 
Parameters: - 
vmin, vmaxfloat or None
- 
If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e., __call__(A)callsautoscale_None(A).
- 
clipbool, default: False
- 
If Truevalues falling outside the range[vmin, vmax], are mapped to 0 or 1, whichever is closer, and masked values are set to 1. IfFalsemasked values remain masked.Clipping silently defeats the purpose of setting the over, under, and masked colors in a colormap, so it is likely to lead to surprises; therefore the default is clip=False.
 NotesReturns 0 if vmin == vmax.
- 
 - 
__module__ = 'matplotlib.colors'
 - 
__slotnames__ = []
 - 
__weakref__
- 
list of weak references to the object (if defined) 
 - 
autoscale(self, A)[source]
- 
Set vmin, vmax to min, max of A. 
 - 
autoscale_None(self, A)[source]
- 
If vmin or vmax are not set, use the min/max of A to set them. 
 - 
inverse(self, value)[source]
 - 
static process_value(value)[source]
- 
Homogenize the input value for easy and efficient normalization. value can be a scalar or sequence. Returns: - 
resultmasked array
- 
Masked array with the same shape as value. 
- 
is_scalarbool
- 
Whether value is a scalar. 
 NotesFloat dtypes are preserved; integer types with two bytes or smaller are converted to np.float32, and larger types are converted to np.float64. Preserving float32 when possible, and using in-place operations, greatly improves speed for large arrays. 
- 
 - 
scaled(self)[source]
- 
Return whether vmin and vmax are set. 
 
- 
Examples using matplotlib.colors.Normalize
 
    © 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
    https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.colors.Normalize.html