matplotlib.colors.LinearSegmentedColormap
- 
class matplotlib.colors.LinearSegmentedColormap(name, segmentdata, N=256, gamma=1.0)[source]
- 
Bases: matplotlib.colors.ColormapColormap objects based on lookup tables using linear segments. The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain divided into any number of segments. Create color map from linear mapping segments segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of x, y0, y1 tuples, forming rows in a table. Entries for alpha are optional. Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use: cdict = {'red': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)], 'blue': [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)]}Each row in the table for a given color is a sequence of x, y0, y1 tuples. In each sequence, x must increase monotonically from 0 to 1. For any input value z falling between x[i] and x[i+1], the output value of a given color will be linearly interpolated between y1[i] and y0[i+1]: row i: x y0 y1 / / row i+1: x y0 y1Hence y0 in the first row and y1 in the last row are never used. See also - 
 LinearSegmentedColormap.from_list
- Static method; factory function for generating a smoothly-varying LinearSegmentedColormap.
- 
 makeMappingArray
- For information about making a mapping array.
 - 
__init__(self, name, segmentdata, N=256, gamma=1.0)[source]
- 
Create color map from linear mapping segments segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of x, y0, y1 tuples, forming rows in a table. Entries for alpha are optional. Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use: cdict = {'red': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)], 'blue': [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)]}Each row in the table for a given color is a sequence of x, y0, y1 tuples. In each sequence, x must increase monotonically from 0 to 1. For any input value z falling between x[i] and x[i+1], the output value of a given color will be linearly interpolated between y1[i] and y0[i+1]: row i: x y0 y1 / / row i+1: x y0 y1Hence y0 in the first row and y1 in the last row are never used. See also - 
 LinearSegmentedColormap.from_list
- Static method; factory function for generating a smoothly-varying LinearSegmentedColormap.
- 
 makeMappingArray
- For information about making a mapping array.
 
- 
 
 - 
__module__ = 'matplotlib.colors'
 - 
static from_list(name, colors, N=256, gamma=1.0)[source]
- 
Create a LinearSegmentedColormapfrom a list of colors.Parameters: - 
namestr
- 
The name of the colormap. 
- 
colorsarray-like of colors or array-like of (value, color)
- 
If only colors are given, they are equidistantly mapped from the range \([0, 1]\); i.e. 0 maps to colors[0]and 1 maps tocolors[-1]. If (value, color) pairs are given, the mapping is from value to color. This can be used to divide the range unevenly.
- 
Nint
- 
The number of rgb quantization levels. 
- 
gammafloat
 
- 
 - 
reversed(self, name=None)[source]
- 
Return a reversed instance of the Colormap. Parameters: - 
namestr, optional
- 
The name for the reversed colormap. If it's None the name will be the name of the parent colormap + "_r". 
 Returns: - LinearSegmentedColormap
- 
The reversed colormap. 
 
- 
 - 
set_gamma(self, gamma)[source]
- 
Set a new gamma value and regenerate color map. 
 
- 
 
Examples using matplotlib.colors.LinearSegmentedColormap
 
    © 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
    https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html