# class BigDecimal

Parent:
Numeric

`BigDecimal` provides arbitrary-precision floating point decimal arithmetic.

## Introduction

Ruby provides built-in support for arbitrary precision integer arithmetic.

For example:

```42**13  #=>   1265437718438866624512
```

`BigDecimal` provides similar support for very large or very accurate floating point numbers.

Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.

For example, try:

```sum = 0
10_000.times do
sum = sum + 0.0001
end
print sum #=> 0.9999999999999062
```

and contrast with the output from:

```require 'bigdecimal'

sum = BigDecimal("0")
10_000.times do
sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1
```

Similarly:

```(BigDecimal("1.2") - BigDecimal("1.0")) == BigDecimal("0.2") #=> true

(1.2 - 1.0) == 0.2 #=> false
```

## Special features of accurate decimal arithmetic

Because `BigDecimal` is more accurate than normal binary floating point arithmetic, it requires some special values.

### Infinity

`BigDecimal` sometimes needs to return infinity, for example if you divide a value by zero.

```BigDecimal("1.0") / BigDecimal("0.0")  #=> Infinity
BigDecimal("-1.0") / BigDecimal("0.0")  #=> -Infinity
```

You can represent infinite numbers to `BigDecimal` using the strings `'Infinity'`, `'+Infinity'` and `'-Infinity'` (case-sensitive)

### Not a Number

When a computation results in an undefined value, the special value `NaN` (for 'not a number') is returned.

Example:

```BigDecimal("0.0") / BigDecimal("0.0") #=> NaN
```

You can also create undefined values.

NaN is never considered to be the same as any other value, even NaN itself:

```n = BigDecimal('NaN')
n == 0.0 #=> false
n == n #=> false
```

### Positive and negative zero

If a computation results in a value which is too small to be represented as a `BigDecimal` within the currently specified limits of precision, zero must be returned.

If the value which is too small to be represented is negative, a `BigDecimal` value of negative zero is returned.

```BigDecimal("1.0") / BigDecimal("-Infinity") #=> -0.0
```

If the value is positive, a value of positive zero is returned.

```BigDecimal("1.0") / BigDecimal("Infinity") #=> 0.0
```

(See `BigDecimal.mode` for how to specify limits of precision.)

Note that `-0.0` and `0.0` are considered to be the same for the purposes of comparison.

Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.

## bigdecimal/util

When you require `bigdecimal/util`, the `to_d` method will be available on `BigDecimal` and the native `Integer`, `Float`, `Rational`, and `String` classes:

```require 'bigdecimal/util'

42.to_d         # => 0.42e2
0.5.to_d        # => 0.5e0
(2/3r).to_d(3)  # => 0.667e0
"0.5".to_d      # => 0.5e0
```

Copyright (C) 2002 by Shigeo Kobayashi <[email protected]>.

`BigDecimal` is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.

Maintained by mrkn <[email protected]> and ruby-core members.

Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.

### Constants

BASE

Base value used in internal calculations. On a 32 bit system, `BASE` is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn't fit in 32 bits, so you couldn't guarantee that two groups could always be multiplied together without overflow.)

EXCEPTION_ALL

Determines whether overflow, underflow or zero divide result in an exception being thrown. See `BigDecimal.mode`.

EXCEPTION_INFINITY

Determines what happens when the result of a computation is infinity. See `BigDecimal.mode`.

EXCEPTION_NaN

Determines what happens when the result of a computation is not a number (NaN). See `BigDecimal.mode`.

EXCEPTION_OVERFLOW

Determines what happens when the result of a computation is an overflow (a result too large to be represented). See `BigDecimal.mode`.

EXCEPTION_UNDERFLOW

Determines what happens when the result of a computation is an underflow (a result too small to be represented). See `BigDecimal.mode`.

EXCEPTION_ZERODIVIDE

Determines what happens when a division by zero is performed. See `BigDecimal.mode`.

INFINITY

Positive infinity value.

NAN

'Not a Number' value.

ROUND_CEILING

Round towards +Infinity. See `BigDecimal.mode`.

ROUND_DOWN

Indicates that values should be rounded towards zero. See `BigDecimal.mode`.

ROUND_FLOOR

Round towards -Infinity. See `BigDecimal.mode`.

ROUND_HALF_DOWN

Indicates that digits >= 6 should be rounded up, others rounded down. See `BigDecimal.mode`.

ROUND_HALF_EVEN

Round towards the even neighbor. See `BigDecimal.mode`.

ROUND_HALF_UP

Indicates that digits >= 5 should be rounded up, others rounded down. See `BigDecimal.mode`.

ROUND_MODE

Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See `BigDecimal.mode`.

ROUND_UP

Indicates that values should be rounded away from zero. See `BigDecimal.mode`.

SIGN_NEGATIVE_FINITE

Indicates that a value is negative and finite. See `BigDecimal.sign`.

SIGN_NEGATIVE_INFINITE

Indicates that a value is negative and infinite. See `BigDecimal.sign`.

SIGN_NEGATIVE_ZERO

Indicates that a value is -0. See `BigDecimal.sign`.

SIGN_NaN

Indicates that a value is not a number. See `BigDecimal.sign`.

SIGN_POSITIVE_FINITE

Indicates that a value is positive and finite. See `BigDecimal.sign`.

SIGN_POSITIVE_INFINITE

Indicates that a value is positive and infinite. See `BigDecimal.sign`.

SIGN_POSITIVE_ZERO

Indicates that a value is +0. See `BigDecimal.sign`.

VERSION

The version of bigdecimal library

### Public Class Methods

```static VALUE
{
ENTER(2);
Real *pv;
unsigned char *pch;
unsigned char ch;
unsigned long m=0;

pch = (unsigned char *)StringValueCStr(str);
/* First get max prec */
while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
if(!ISDIGIT(ch)) {
rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
}
m = m*10 + (unsigned long)(ch-'0');
}
if (m > VpBaseFig()) m -= VpBaseFig();
GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self));
m /= VpBaseFig();
if (m && pv->MaxPrec > m) {
pv->MaxPrec = m+1;
}
}```

Internal method used to provide marshalling support. See the `Marshal` module.

double_fig Show source
```static VALUE
BigDecimal_double_fig(VALUE self)
{
return INT2FIX(VpDblFig());
}```

The `BigDecimal.double_fig` class method returns the number of digits a `Float` number is allowed to have. The result depends upon the CPU and OS in use.

interpret_loosely(p1) Show source
```static VALUE
BigDecimal_s_interpret_loosely(VALUE klass, VALUE str)
{
ENTER(1);
char const *c_str;
Real *pv;

c_str = StringValueCStr(str);
GUARD_OBJ(pv, VpAlloc(0, c_str, 0, 1));
pv->obj = TypedData_Wrap_Struct(klass, &BigDecimal_data_type, pv);
RB_OBJ_FREEZE(pv->obj);
return pv->obj;
}```
json_create(object) Show source
```# File ext/json/lib/json/add/bigdecimal.rb, line 11
def self.json_create(object)
end```

Import a `JSON` Marshalled object.

method used for `JSON` marshalling support.

limit(digits) Show source
```static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
VALUE  nFig;
VALUE  nCur = SIZET2NUM(VpGetPrecLimit());

if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
int nf;
if (NIL_P(nFig)) return nCur;
nf = NUM2INT(nFig);
if (nf < 0) {
rb_raise(rb_eArgError, "argument must be positive");
}
VpSetPrecLimit(nf);
}
return nCur;
}```

Limit the number of significant digits in newly created `BigDecimal` numbers to the specified value. Rounding is performed as necessary, as specified by `BigDecimal.mode`.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.

mode(mode, value) Show source
```static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
VALUE which;
VALUE val;
unsigned long f,fo;

rb_scan_args(argc, argv, "11", &which, &val);
f = (unsigned long)NUM2INT(which);

if (f & VP_EXCEPTION_ALL) {
/* Exception mode setting */
fo = VpGetException();
if (val == Qnil) return INT2FIX(fo);
if (val != Qfalse && val!=Qtrue) {
rb_raise(rb_eArgError, "second argument must be true or false");
return Qnil; /* Not reached */
}
if (f & VP_EXCEPTION_INFINITY) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
(fo & (~VP_EXCEPTION_INFINITY))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_NaN) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
(fo & (~VP_EXCEPTION_NaN))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_UNDERFLOW) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
(fo & (~VP_EXCEPTION_UNDERFLOW))));
}
fo = VpGetException();
if(f & VP_EXCEPTION_ZERODIVIDE) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
(fo & (~VP_EXCEPTION_ZERODIVIDE))));
}
fo = VpGetException();
return INT2FIX(fo);
}
if (VP_ROUND_MODE == f) {
/* Rounding mode setting */
unsigned short sw;
fo = VpGetRoundMode();
if (NIL_P(val)) return INT2FIX(fo);
sw = check_rounding_mode(val);
fo = VpSetRoundMode(sw);
return INT2FIX(fo);
}
rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid");
return Qnil;
}```

Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.

Six values of the mode parameter control the handling of arithmetic exceptions:

For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:

`EXCEPTION_NaN`

NaN

`EXCEPTION_INFINITY`

+Infinity or -Infinity

`EXCEPTION_UNDERFLOW`

0

`EXCEPTION_OVERFLOW`

+Infinity or -Infinity

`EXCEPTION_ZERODIVIDE`

+Infinity or -Infinity

One value of the mode parameter controls the rounding of numeric values: `BigDecimal::ROUND_MODE`. The values it can take are:

`ROUND_UP`, :up

round away from zero

`ROUND_DOWN`, :down, :truncate

round towards zero (truncate)

`ROUND_HALF_UP`, :half_up, :default

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)

`ROUND_HALF_DOWN`, :half_down

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.

`ROUND_HALF_EVEN`, :half_even, :banker

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker's rounding)

`ROUND_CEILING`, :ceiling, :ceil

round towards positive infinity (ceil)

`ROUND_FLOOR`, :floor

round towards negative infinity (floor)

save_exception_mode { ... } Show source
```static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
unsigned short const exception_mode = VpGetException();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetException(exception_mode);
if (state) rb_jump_tag(state);
return ret;
}```

Execute the provided block, but preserve the exception mode

```BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)

BigDecimal(BigDecimal('Infinity'))
BigDecimal(BigDecimal('-Infinity'))
BigDecimal(BigDecimal('NaN'))
end
```

For use with the BigDecimal::EXCEPTION_*

save_limit { ... } Show source
```static VALUE
BigDecimal_save_limit(VALUE self)
{
size_t const limit = VpGetPrecLimit();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetPrecLimit(limit);
if (state) rb_jump_tag(state);
return ret;
}```

Execute the provided block, but preserve the precision limit

```BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
BigDecimal.limit(200)
puts BigDecimal.limit
end
puts BigDecimal.limit
```
save_rounding_mode { ... } Show source
```static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
unsigned short const round_mode = VpGetRoundMode();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetRoundMode(round_mode);
if (state) rb_jump_tag(state);
return ret;
}```

Execute the provided block, but preserve the rounding mode

```BigDecimal.save_rounding_mode do
BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end
```

For use with the BigDecimal::ROUND_*

### Public Instance Methods

a % b Show source
```static VALUE
BigDecimal_mod(VALUE self, VALUE r) ```

Returns the modulus from dividing by b.

Also aliased as: modulo
mult(value, digits) Show source
```static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
size_t mx;

GUARD_OBJ(a, GetVpValue(self, 1));
if (RB_TYPE_P(r, T_FLOAT)) {
b = GetVpValueWithPrec(r, DBLE_FIG, 1);
}
else if (RB_TYPE_P(r, T_RATIONAL)) {
b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
}
else {
b = GetVpValue(r,0);
}

if (!b) return DoSomeOne(self, r, '*');
SAVE(b);

mx = a->Prec + b->Prec;
GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
VpMult(c, a, b);
}```

Multiply by the specified value.

e.g.

```c = a.mult(b,n)
c = a * b
```
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to `BigDecimal.mode`.

a ** n → bigdecimal Show source
```static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
return BigDecimal_power(1, &exp, self);
}```

Returns the value raised to the power of n.

```static VALUE
{
ENTER(5);
Real *c, *a, *b;
size_t mx;

GUARD_OBJ(a, GetVpValue(self, 1));
if (RB_TYPE_P(r, T_FLOAT)) {
b = GetVpValueWithPrec(r, DBLE_FIG, 1);
}
else if (RB_TYPE_P(r, T_RATIONAL)) {
b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
}
else {
b = GetVpValue(r, 0);
}

if (!b) return DoSomeOne(self,r,'+');
SAVE(b);

if (VpIsNaN(b)) return b->obj;
if (VpIsNaN(a)) return a->obj;

if (mx == (size_t)-1L) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
}
else {
GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
if(!mx) {
VpSetInf(c, VpGetSign(a));
}
else {
}
}
}```

e.g.

```c = a.add(b,n)
c = a + b
```
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to `BigDecimal.mode`.

+big_decimal → big_decimal Show source
```static VALUE
BigDecimal_uplus(VALUE self)
{
return self;
}```

Return self.

```+BigDecimal('5')  #=> 0.5e1
```
a - b → bigdecimal Show source
```static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
size_t mx;

GUARD_OBJ(a, GetVpValue(self,1));
if (RB_TYPE_P(r, T_FLOAT)) {
b = GetVpValueWithPrec(r, DBLE_FIG, 1);
}
else if (RB_TYPE_P(r, T_RATIONAL)) {
b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
}
else {
b = GetVpValue(r,0);
}

if (!b) return DoSomeOne(self,r,'-');
SAVE(b);

if (VpIsNaN(b)) return b->obj;
if (VpIsNaN(a)) return a->obj;

if (mx == (size_t)-1L) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
}
else {
GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
if (!mx) {
VpSetInf(c,VpGetSign(a));
}
else {
}
}
}```

Subtract the specified value.

e.g.

```c = a - b
```

The precision of the result value depends on the type of `b`.

If `b` is a `Float`, the precision of the result is Float::DIG+1.

If `b` is a `BigDecimal`, the precision of the result is `b`'s precision of internal representation from platform. So, it's return value is platform dependent.

-big_decimal → big_decimal Show source
```static VALUE
BigDecimal_neg(VALUE self)
{
ENTER(5);
Real *c, *a;
GUARD_OBJ(a, GetVpValue(self, 1));
GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
VpAsgn(c, a, -1);
}```

Return the negation of self.

```-BigDecimal('5')  #=> -0.5e1
```
a / b → bigdecimal Show source
```static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
ENTER(5);
Real *c=NULL, *res=NULL, *div = NULL;
r = BigDecimal_divide(&c, &res, &div, self, r);
if (!NIL_P(r)) return r; /* coerced by other */
SAVE(c); SAVE(res); SAVE(div);
/* a/b = c + r/b */
/* c xxxxx
r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
*/
/* Round */
if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
}
}```

Divide by the specified value.

Also aliased as: quo
a < b Show source
```static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '<');
}```

Returns true if a is less than b.

Values may be coerced to perform the comparison (see ==, `BigDecimal#coerce`).

a <= b Show source
```static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'L');
}```

Returns true if a is less than or equal to b.

Values may be coerced to perform the comparison (see ==, `BigDecimal#coerce`).

<=>(p1) Show source
```static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '*');
}```

The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.

==(p1) Show source
```static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}```

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for `BigDecimal`.

Values may be coerced to perform the comparison:

```BigDecimal('1.0') == 1.0  #=> true
```
Also aliased as: ===, eql?
===(p1)

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for `BigDecimal`.

Values may be coerced to perform the comparison:

```BigDecimal('1.0') == 1.0  #=> true
```
Alias for: ==
a > b Show source
```static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '>');
}```

Returns true if a is greater than b.

Values may be coerced to perform the comparison (see ==, `BigDecimal#coerce`).

a >= b Show source
```static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'G');
}```

Returns true if a is greater than or equal to b.

Values may be coerced to perform the comparison (see ==, `BigDecimal#coerce`)

_dump Show source
```static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *vp;
char *psz;
VALUE dummy;
volatile VALUE dump;

rb_scan_args(argc, argv, "01", &dummy);
GUARD_OBJ(vp,GetVpValue(self, 1));
dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
psz = RSTRING_PTR(dump);
sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
VpToString(vp, psz+strlen(psz), 0, 0);
rb_str_resize(dump, strlen(psz));
return dump;
}```

`Method` used to provide marshalling support.

```inf = BigDecimal('Infinity')
#=> Infinity
#=> Infinity
```

See the `Marshal` module.

abs → big_decimal Show source
```static VALUE
BigDecimal_abs(VALUE self)
{
ENTER(5);
Real *c, *a;
size_t mx;

GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpAsgn(c, a, 1);
VpChangeSign(c, 1);
}```

Returns the absolute value, as a `BigDecimal`.

```BigDecimal('5').abs  #=> 0.5e1
BigDecimal('-3').abs #=> 0.3e1
```
```static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
SIGNED_VALUE mx = GetPrecisionInt(n);
if (mx == 0) return BigDecimal_add(self, b);
else {
size_t pl = VpSetPrecLimit(0);
VpSetPrecLimit(pl);
GUARD_OBJ(cv, GetVpValue(c, 1));
VpLeftRound(cv, VpGetRoundMode(), mx);
}
}```

e.g.

```c = a.add(b,n)
c = a + b
```
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to `BigDecimal.mode`.

as_json(*) Show source
```# File ext/json/lib/json/add/bigdecimal.rb, line 18
def as_json(*)
{
JSON.create_id => self.class.name,
'b'            => _dump,
}
end```

`Marshal` the object to `JSON`.

method used for `JSON` marshalling support.

ceil(n) Show source
```static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
VALUE vLoc;
size_t mx, pl = VpSetPrecLimit(0);

if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
iLoc = 0;
} else {
iLoc = NUM2INT(vLoc);
}

GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
}```

Return the smallest integer greater than or equal to the value, as a `BigDecimal`.

```BigDecimal('3.14159').ceil #=> 4
BigDecimal('-9.1').ceil #=> -9
```

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

```BigDecimal('3.14159').ceil(3) #=> 3.142
BigDecimal('13345.234').ceil(-2) #=> 13400.0
```
clone() Show source
```static VALUE
BigDecimal_clone(VALUE self)
{
return self;
}```
Also aliased as: dup
coerce(p1) Show source
```static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
ENTER(2);
VALUE obj;
Real *b;

if (RB_TYPE_P(other, T_FLOAT)) {
GUARD_OBJ(b, GetVpValueWithPrec(other, DBLE_FIG, 1));
obj = rb_assoc_new(ToValue(b), self);
}
else {
if (RB_TYPE_P(other, T_RATIONAL)) {
Real* pv = DATA_PTR(self);
GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
}
else {
GUARD_OBJ(b, GetVpValue(other, 1));
}
obj = rb_assoc_new(b->obj, self);
}

return obj;
}```

The coerce method provides support for Ruby type coercion. It is not enabled by default.

This means that binary operations like + * / or - can often be performed on a `BigDecimal` and an object of another type, if the other object can be coerced into a `BigDecimal` value.

e.g.

```a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5
```

Note that coercing a `String` to a `BigDecimal` is not supported by default; it requires a special compile-time option when building Ruby.

div(value, digits) → bigdecimal or integer Show source
```static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
VALUE b,n;

rb_scan_args(argc, argv, "11", &b, &n);

return BigDecimal_div2(self, b, n);
}```

Divide by the specified value.

digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to `BigDecimal.mode`.

If digits is 0, the result is the same as for the / operator or `quo`.

If digits is not specified, the result is an integer, by analogy with `Float#div`; see also `BigDecimal#divmod`.

Examples:

```a = BigDecimal("4")
b = BigDecimal("3")

a.div(b, 3)  # => 0.133e1

a.div(b, 0)  # => 0.1333333333333333333e1
a / b        # => 0.1333333333333333333e1
a.quo(b)     # => 0.1333333333333333333e1

a.div(b)     # => 1
```
divmod(value) Show source
```static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
ENTER(5);
Real *div = NULL, *mod = NULL;

if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
SAVE(div); SAVE(mod);
return rb_assoc_new(ToValue(div), ToValue(mod));
}
return DoSomeOne(self,r,rb_intern("divmod"));
}```

Divides by the specified value, and returns the quotient and modulus as `BigDecimal` numbers. The quotient is rounded towards negative infinity.

For example:

```require 'bigdecimal'

a = BigDecimal("42")
b = BigDecimal("9")

q, m = a.divmod(b)

c = q * b + m

a == c  #=> true
```

The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.

dup()
Alias for: clone
eql?(p1)

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for `BigDecimal`.

Values may be coerced to perform the comparison:

```BigDecimal('1.0') == 1.0  #=> true
```
Alias for: ==
exponent() Show source
```static VALUE
BigDecimal_exponent(VALUE self)
{
ssize_t e = VpExponent10(GetVpValue(self, 1));
return SSIZET2NUM(e);
}```

Returns the exponent of the `BigDecimal` number, as an `Integer`.

If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.

finite?() Show source
```static VALUE
BigDecimal_IsFinite(VALUE self)
{
Real *p = GetVpValue(self, 1);
if (VpIsNaN(p)) return Qfalse;
if (VpIsInf(p)) return Qfalse;
return Qtrue;
}```

Returns True if the value is finite (not NaN or infinite).

fix() Show source
```static VALUE
BigDecimal_fix(VALUE self)
{
ENTER(5);
Real *c, *a;
size_t mx;

GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
}```

Return the integer part of the number, as a `BigDecimal`.

floor(n) Show source
```static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
VALUE vLoc;
size_t mx, pl = VpSetPrecLimit(0);

if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
iLoc = 0;
}
else {
iLoc = NUM2INT(vLoc);
}

GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
VPrint(stderr, "floor: c=%\n", c);
#endif
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
}```

Return the largest integer less than or equal to the value, as a `BigDecimal`.

```BigDecimal('3.14159').floor #=> 3
BigDecimal('-9.1').floor #=> -10
```

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

```BigDecimal('3.14159').floor(3) #=> 3.141
BigDecimal('13345.234').floor(-2) #=> 13300.0
```
frac() Show source
```static VALUE
BigDecimal_frac(VALUE self)
{
ENTER(5);
Real *c, *a;
size_t mx;

GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpFrac(c, a);
}```

Return the fractional part of the number, as a `BigDecimal`.

```static VALUE
BigDecimal_hash(VALUE self)
{
ENTER(1);
Real *p;
st_index_t hash;

GUARD_OBJ(p, GetVpValue(self, 1));
hash = (st_index_t)p->sign;
/* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
if(hash == 2 || hash == (st_index_t)-2) {
hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
hash += p->exponent;
}
return ST2FIX(hash);
}```

Creates a hash for this `BigDecimal`.

Two BigDecimals with equal sign, fractional part and exponent have the same hash.

infinite?() Show source
```static VALUE
BigDecimal_IsInfinite(VALUE self)
{
Real *p = GetVpValue(self, 1);
if (VpIsPosInf(p)) return INT2FIX(1);
if (VpIsNegInf(p)) return INT2FIX(-1);
return Qnil;
}```

Returns nil, -1, or +1 depending on whether the value is finite, -Infinity, or +Infinity.

inspect() Show source
```static VALUE
BigDecimal_inspect(VALUE self)
{
ENTER(5);
Real *vp;
volatile VALUE str;
size_t nc;

GUARD_OBJ(vp, GetVpValue(self, 1));
nc = VpNumOfChars(vp, "E");

str = rb_str_new(0, nc);
VpToString(vp, RSTRING_PTR(str), 0, 0);
rb_str_resize(str, strlen(RSTRING_PTR(str)));
return str;
}```

Returns a string representation of self.

```BigDecimal("1234.5678").inspect
#=> "0.12345678e4"
```
modulo(b)

Returns the modulus from dividing by b.

Alias for: %
mult(value, digits) Show source
```static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
SIGNED_VALUE mx = GetPrecisionInt(n);
if (mx == 0) return BigDecimal_mult(self, b);
else {
size_t pl = VpSetPrecLimit(0);
VALUE   c = BigDecimal_mult(self, b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv, GetVpValue(c, 1));
VpLeftRound(cv, VpGetRoundMode(), mx);
}
}```

Multiply by the specified value.

e.g.

```c = a.mult(b,n)
c = a * b
```
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to `BigDecimal.mode`.

n_significant_digits() Show source
```static VALUE
BigDecimal_n_significant_digits(VALUE self)
{
ENTER(1);

Real *p;
GUARD_OBJ(p, GetVpValue(self, 1));

ssize_t n = p->Prec;
while (n > 0 && p->frac[n-1] == 0) --n;
if (n <= 0) {
return INT2FIX(0);
}

int nlz, ntz;

BDIGIT x = p->frac[0];
for (nlz = BASE_FIG; x > 0; x /= 10) --nlz;

x = p->frac[n-1];
for (ntz = 0; x > 0 && x % 10 == 0; x /= 10) ++ntz;

ssize_t n_digits = BASE_FIG * n - nlz - ntz;
return SSIZET2NUM(n_digits);
}```
nan?() Show source
```static VALUE
BigDecimal_IsNaN(VALUE self)
{
Real *p = GetVpValue(self, 1);
if (VpIsNaN(p))  return Qtrue;
return Qfalse;
}```

Returns True if the value is Not a Number.

nonzero?() Show source
```static VALUE
BigDecimal_nonzero(VALUE self)
{
Real *a = GetVpValue(self, 1);
return VpIsZero(a) ? Qnil : self;
}```

Returns self if the value is non-zero, nil otherwise.

power(n) Show source
power(n, prec)
```static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
ENTER(5);
VALUE vexp, prec;
Real* exp = NULL;
Real *x, *y;
ssize_t mp, ma, n;
SIGNED_VALUE int_exp;
double d;

rb_scan_args(argc, argv, "11", &vexp, &prec);

GUARD_OBJ(x, GetVpValue(self, 1));
n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);

if (VpIsNaN(x)) {
y = VpCreateRbObject(n, "0");
RB_GC_GUARD(y->obj);
VpSetNaN(y);
}

retry:
switch (TYPE(vexp)) {
case T_FIXNUM:
break;

case T_BIGNUM:
break;

case T_FLOAT:
d = RFLOAT_VALUE(vexp);
if (d == round(d)) {
if (FIXABLE(d)) {
vexp = LONG2FIX((long)d);
}
else {
vexp = rb_dbl2big(d);
}
goto retry;
}
if (NIL_P(prec)) {
n += DBLE_FIG;
}
exp = GetVpValueWithPrec(vexp, DBLE_FIG, 1);
break;

case T_RATIONAL:
if (is_zero(rb_rational_num(vexp))) {
if (is_positive(vexp)) {
vexp = INT2FIX(0);
goto retry;
}
}
else if (is_one(rb_rational_den(vexp))) {
vexp = rb_rational_num(vexp);
goto retry;
}
exp = GetVpValueWithPrec(vexp, n, 1);
if (NIL_P(prec)) {
n += n;
}
break;

case T_DATA:
if (is_kind_of_BigDecimal(vexp)) {
VALUE zero = INT2FIX(0);
VALUE rounded = BigDecimal_round(1, &zero, vexp);
if (RTEST(BigDecimal_eq(vexp, rounded))) {
vexp = BigDecimal_to_i(vexp);
goto retry;
}
if (NIL_P(prec)) {
GUARD_OBJ(y, GetVpValue(vexp, 1));
n += y->Prec*VpBaseFig();
}
exp = DATA_PTR(vexp);
break;
}
/* fall through */
default:
rb_raise(rb_eTypeError,
"wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
RB_OBJ_CLASSNAME(vexp));
}

if (VpIsZero(x)) {
if (is_negative(vexp)) {
y = VpCreateRbObject(n, "#0");
RB_GC_GUARD(y->obj);
if (BIGDECIMAL_NEGATIVE_P(x)) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
/* (-0) ** (-even_integer)  -> Infinity */
VpSetPosInf(y);
}
else {
/* (-0) ** (-odd_integer)  -> -Infinity */
VpSetNegInf(y);
}
}
else {
/* (-0) ** (-non_integer)  -> Infinity */
VpSetPosInf(y);
}
}
else {
/* (+0) ** (-num)  -> Infinity */
VpSetPosInf(y);
}
}
else if (is_zero(vexp)) {
}
else {
}
}

if (is_zero(vexp)) {
}
else if (is_one(vexp)) {
return self;
}

if (VpIsInf(x)) {
if (is_negative(vexp)) {
if (BIGDECIMAL_NEGATIVE_P(x)) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
/* (-Infinity) ** (-even_integer) -> +0 */
}
else {
/* (-Infinity) ** (-odd_integer) -> -0 */
}
}
else {
/* (-Infinity) ** (-non_integer) -> -0 */
}
}
else {
}
}
else {
y = VpCreateRbObject(n, "0");
if (BIGDECIMAL_NEGATIVE_P(x)) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
VpSetPosInf(y);
}
else {
VpSetNegInf(y);
}
}
else {
/* TODO: support complex */
rb_raise(rb_eMathDomainError,
"a non-integral exponent for a negative base");
}
}
else {
VpSetPosInf(y);
}
}
}

if (exp != NULL) {
return rmpd_power_by_big_decimal(x, exp, n);
}
else if (RB_TYPE_P(vexp, T_BIGNUM)) {
VALUE abs_value = BigDecimal_abs(self);
if (is_one(abs_value)) {
}
else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
if (is_negative(vexp)) {
y = VpCreateRbObject(n, "0");
if (is_even(vexp)) {
VpSetInf(y, VpGetSign(x));
}
else {
VpSetInf(y, -VpGetSign(x));
}
}
else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
}
else {
}
}
else {
if (is_positive(vexp)) {
y = VpCreateRbObject(n, "0");
if (is_even(vexp)) {
VpSetInf(y, VpGetSign(x));
}
else {
VpSetInf(y, -VpGetSign(x));
}
}
else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
}
else {
}
}
}

int_exp = FIX2LONG(vexp);
ma = int_exp;
if (ma <  0) ma = -ma;
if (ma == 0) ma = 1;

if (VpIsDef(x)) {
mp = x->Prec * (VpBaseFig() + 1);
GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
}
else {
GUARD_OBJ(y, VpCreateRbObject(1, "0"));
}
VpPower(y, x, int_exp);
if (!NIL_P(prec) && VpIsDef(y)) {
VpMidRound(y, VpGetRoundMode(), n);
}
}```

Returns the value raised to the power of n.

Note that n must be an `Integer`.

Also available as the operator **.

precision → intreger Show source
```static VALUE
BigDecimal_precision(VALUE self)
{
ENTER(1);

Real *p;
GUARD_OBJ(p, GetVpValue(self, 1));

/*
* The most significant digit is frac[0], and the least significant digit is frac[Prec-1].
* When the exponent is zero, the decimal point is located just before frac[0].
* When the exponent is negative, the decimal point moves to leftward.
* Conversely, when the exponent is positive, the decimal point moves to rightward.
*
*    | frac[0] frac[1] frac[2] . frac[3] frac[4] ... frac[Prec-1]
*    |------------------------> exponent == 3
*/

ssize_t ex = p->exponent;
ssize_t precision = 0;
if (ex < 0) {
precision = (-ex + 1) * BASE_FIG;  /* 1 is for p->frac[0] */
ex = 0;
}
else if (p->Prec > 0) {
BDIGIT x = p->frac[0];
for (precision = 0; x > 0; x /= 10) {
++precision;
}
}

if (ex > (ssize_t)p->Prec) {
precision += (ex - 1) * BASE_FIG;
}
else if (p->Prec > 0) {
ssize_t n = (ssize_t)p->Prec - 1;
while (n > 0 && p->frac[n] == 0) --n;

precision += n * BASE_FIG;

if (ex < (ssize_t)p->Prec) {
BDIGIT x = p->frac[n];
for (; x > 0 && x % 10 == 0; x /= 10) {
--precision;
}
}
}

return SSIZET2NUM(precision);
}```

Returns the number of decimal digits in this number.

Example:

```BigDecimal("0").precision  # => 0
BigDecimal("1").precision  # => 1
BigDecimal("-1e20").precision  # => 21
BigDecimal("1e-20").precision  # => 20
BigDecimal("Infinity").precision  # => 0
BigDecimal("-Infinity").precision  # => 0
BigDecimal("NaN").precision  # => 0
```
precs → array Show source
```static VALUE
BigDecimal_prec(VALUE self)
{
ENTER(1);
Real *p;
VALUE obj;

rb_category_warn(RB_WARN_CATEGORY_DEPRECATED,
"BigDecimal#precs is deprecated and will be removed in the future; "

GUARD_OBJ(p, GetVpValue(self, 1));
obj = rb_assoc_new(SIZET2NUM(p->Prec*VpBaseFig()),
SIZET2NUM(p->MaxPrec*VpBaseFig()));
return obj;
}```

Returns an `Array` of two `Integer` values that represent platform-dependent internal storage properties.

This method is deprecated and will be removed in the future. Instead, use `BigDecimal#n_significant_digits` for obtaining the number of significant digits in scientific notation, and `BigDecimal#precision` for obtaining the number of digits in decimal notation.

```BigDecimal('5').precs #=> [9, 18]
```
quo(value) → bigdecimal

Divide by the specified value.

Alias for: /
remainder(value) Show source
```static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
VALUE  f;
Real  *d, *rv = 0;
f = BigDecimal_divremain(self, r, &d, &rv);
if (!NIL_P(f)) return f;
}```

Returns the remainder from dividing by the value.

x.remainder(y) means x-y*(x/y).truncate

round(n, mode) Show source
```static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real   *c, *a;
int    iLoc = 0;
VALUE  vLoc;
VALUE  vRound;
int    round_to_int = 0;
size_t mx, pl;

unsigned short sw = VpGetRoundMode();

switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
case 0:
iLoc = 0;
round_to_int = 1;
break;
case 1:
if (RB_TYPE_P(vLoc, T_HASH)) {
sw = check_rounding_mode_option(vLoc);
}
else {
iLoc = NUM2INT(vLoc);
if (iLoc < 1) round_to_int = 1;
}
break;
case 2:
iLoc = NUM2INT(vLoc);
if (RB_TYPE_P(vRound, T_HASH)) {
sw = check_rounding_mode_option(vRound);
}
else {
sw = check_rounding_mode(vRound);
}
break;
default:
break;
}

pl = VpSetPrecLimit(0);
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, sw, iLoc);
if (round_to_int) {
return BigDecimal_to_i(ToValue(c));
}
}```

Round to the nearest integer (by default), returning the result as a `BigDecimal` if n is specified, or as an `Integer` if it isn't.

```BigDecimal('3.14159').round #=> 3
BigDecimal('8.7').round #=> 9
BigDecimal('-9.9').round #=> -10

BigDecimal('3.14159').round(2).class.name #=> "BigDecimal"
BigDecimal('3.14159').round.class.name #=> "Integer"
```

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result, and return value will be an `Integer`.

```BigDecimal('3.14159').round(3) #=> 3.142
BigDecimal('13345.234').round(-2) #=> 13300
```

The value of the optional mode argument can be used to determine how rounding is performed; see `BigDecimal.mode`.

sign() Show source
```static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
int s = GetVpValue(self, 1)->sign;
return INT2FIX(s);
}```

Returns the sign of the value.

Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.

The specific value returned indicates the type and sign of the `BigDecimal`, as follows:

`BigDecimal::SIGN_NaN`

value is Not a Number

`BigDecimal::SIGN_POSITIVE_ZERO`

value is +0

`BigDecimal::SIGN_NEGATIVE_ZERO`

value is -0

`BigDecimal::SIGN_POSITIVE_INFINITE`

value is +Infinity

`BigDecimal::SIGN_NEGATIVE_INFINITE`

value is -Infinity

`BigDecimal::SIGN_POSITIVE_FINITE`

value is positive

`BigDecimal::SIGN_NEGATIVE_FINITE`

value is negative

split() Show source
```static VALUE
BigDecimal_split(VALUE self)
{
ENTER(5);
Real *vp;
VALUE obj,str;
ssize_t e, s;
char *psz1;

GUARD_OBJ(vp, GetVpValue(self, 1));
str = rb_str_new(0, VpNumOfChars(vp, "E"));
psz1 = RSTRING_PTR(str);
VpSzMantissa(vp, psz1);
s = 1;
if(psz1[0] == '-') {
size_t len = strlen(psz1 + 1);

memmove(psz1, psz1 + 1, len);
psz1[len] = '\0';
s = -1;
}
if (psz1[0] == 'N') s = 0; /* NaN */
e = VpExponent10(vp);
obj = rb_ary_new2(4);
rb_ary_push(obj, INT2FIX(s));
rb_ary_push(obj, str);
rb_str_resize(str, strlen(psz1));
rb_ary_push(obj, INT2FIX(10));
rb_ary_push(obj, SSIZET2NUM(e));
return obj;
}```

Splits a `BigDecimal` number into four parts, returned as an array of values.

The first value represents the sign of the `BigDecimal`, and is -1 or 1, or 0 if the `BigDecimal` is Not a Number.

The second value is a string representing the significant digits of the `BigDecimal`, with no leading zeros.

The third value is the base used for arithmetic (currently always 10) as an `Integer`.

The fourth value is an `Integer` exponent.

If the `BigDecimal` can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.

From these values, you can translate a `BigDecimal` to a float as follows:

```sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
```

(Note that the `to_f` method is provided as a more convenient way to translate a `BigDecimal` to a `Float`.)

sqrt(n) Show source
```static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
ENTER(5);
Real *c, *a;
size_t mx, n;

GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);

n = GetPrecisionInt(nFig) + VpDblFig() + BASE_FIG;
if (mx <= n) mx = n;
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSqrt(c, a);
}```

Returns the square root of the value.

Result has at least n significant digits.

sub(value, digits) → bigdecimal Show source
```static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
SIGNED_VALUE mx = GetPrecisionInt(n);
if (mx == 0) return BigDecimal_sub(self, b);
else {
size_t pl = VpSetPrecLimit(0);
VALUE   c = BigDecimal_sub(self, b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv, GetVpValue(c, 1));
VpLeftRound(cv, VpGetRoundMode(), mx);
}
}```

Subtract the specified value.

e.g.

```c = a.sub(b,n)
```
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to `BigDecimal.mode`.

to_d → bigdecimal Show source
```# File ext/bigdecimal/lib/bigdecimal/util.rb, line 106
def to_d
self
end```

Returns self.

```require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_d                       # => 0.314e1
```
to_digits → string Show source
```# File ext/bigdecimal/lib/bigdecimal/util.rb, line 86
def to_digits
if self.nan? || self.infinite? || self.zero?
self.to_s
else
i       = self.to_i.to_s
_,f,_,z = self.frac.split
i + "." + ("0"*(-z)) + f
end
end```

Converts a `BigDecimal` to a `String` of the form “nnnnnn.mmm”. This method is deprecated; use `BigDecimal#to_s`(“F”) instead.

```require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_digits                  # => "3.14"
```
to_f() Show source
```static VALUE
BigDecimal_to_f(VALUE self)
{
ENTER(1);
Real *p;
double d;
SIGNED_VALUE e;
char *buf;
volatile VALUE str;

GUARD_OBJ(p, GetVpValue(self, 1));
if (VpVtoD(&d, &e, p) != 1)
return rb_float_new(d);
if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
goto overflow;
if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
goto underflow;

str = rb_str_new(0, VpNumOfChars(p, "E"));
buf = RSTRING_PTR(str);
VpToString(p, buf, 0, 0);
errno = 0;
d = strtod(buf, 0);
if (errno == ERANGE) {
if (d == 0.0) goto underflow;
if (fabs(d) >= HUGE_VAL) goto overflow;
}
return rb_float_new(d);

overflow:
VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
if (BIGDECIMAL_NEGATIVE_P(p))
return rb_float_new(VpGetDoubleNegInf());
else
return rb_float_new(VpGetDoublePosInf());

underflow:
VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
if (BIGDECIMAL_NEGATIVE_P(p))
return rb_float_new(-0.0);
else
return rb_float_new(0.0);
}```

Returns a new `Float` object having approximately the same value as the `BigDecimal` number. Normal accuracy limits and built-in errors of binary `Float` arithmetic apply.

to_i() Show source
```static VALUE
BigDecimal_to_i(VALUE self)
{
ENTER(5);
ssize_t e, nf;
Real *p;

GUARD_OBJ(p, GetVpValue(self, 1));
BigDecimal_check_num(p);

e = VpExponent10(p);
if (e <= 0) return INT2FIX(0);
nf = VpBaseFig();
if (e <= nf) {
return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
}
else {
VALUE a = BigDecimal_split(self);
VALUE digits = RARRAY_AREF(a, 1);
VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
VALUE ret;
ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

if (BIGDECIMAL_NEGATIVE_P(p)) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (dpower < 0) {
ret = rb_funcall(numerator, rb_intern("div"), 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-dpower)));
}
else {
ret = rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(dpower)));
}
if (RB_TYPE_P(ret, T_FLOAT)) {
rb_raise(rb_eFloatDomainError, "Infinity");
}
return ret;
}
}```

Returns the value as an `Integer`.

If the `BigDecimal` is infinity or NaN, raises `FloatDomainError`.

Also aliased as: to_int
to_int()

Returns the value as an `Integer`.

If the `BigDecimal` is infinity or NaN, raises `FloatDomainError`.

Alias for: to_i
to_json(*args) Show source
```# File ext/json/lib/json/add/bigdecimal.rb, line 26
def to_json(*args)
as_json.to_json(*args)
end```

return the `JSON` value

to_r() Show source
```static VALUE
BigDecimal_to_r(VALUE self)
{
Real *p;
ssize_t sign, power, denomi_power;
VALUE a, digits, numerator;

p = GetVpValue(self, 1);
BigDecimal_check_num(p);

sign = VpGetSign(p);
power = VpExponent10(p);
a = BigDecimal_split(self);
digits = RARRAY_AREF(a, 1);
denomi_power = power - RSTRING_LEN(digits);
numerator = rb_funcall(digits, rb_intern("to_i"), 0);

if (sign < 0) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (denomi_power < 0) {
return rb_Rational(numerator,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-denomi_power)));
}
else {
return rb_Rational1(rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(denomi_power))));
}
}```

Converts a `BigDecimal` to a `Rational`.

to_s(s) Show source
```static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
int   fmt = 0;   /* 0: E format, 1: F format */
int   fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */
Real  *vp;
volatile VALUE str;
char  *psz;
char   ch;
size_t nc, mc = 0;
SIGNED_VALUE m;
VALUE  f;

GUARD_OBJ(vp, GetVpValue(self, 1));

if (rb_scan_args(argc, argv, "01", &f) == 1) {
if (RB_TYPE_P(f, T_STRING)) {
psz = StringValueCStr(f);
if (*psz == ' ') {
fPlus = 1;
psz++;
}
else if (*psz == '+') {
fPlus = 2;
psz++;
}
while ((ch = *psz++) != 0) {
if (ISSPACE(ch)) {
continue;
}
if (!ISDIGIT(ch)) {
if (ch == 'F' || ch == 'f') {
fmt = 1; /* F format */
}
break;
}
mc = mc*10 + ch - '0';
}
}
else {
m = NUM2INT(f);
if (m <= 0) {
rb_raise(rb_eArgError, "argument must be positive");
}
mc = (size_t)m;
}
}
if (fmt) {
nc = VpNumOfChars(vp, "F");
}
else {
nc = VpNumOfChars(vp, "E");
}
if (mc > 0) {
nc += (nc + mc - 1) / mc + 1;
}

str = rb_usascii_str_new(0, nc);
psz = RSTRING_PTR(str);

if (fmt) {
VpToFString(vp, psz, mc, fPlus);
}
else {
VpToString (vp, psz, mc, fPlus);
}
rb_str_resize(str, strlen(psz));
return str;
}```

Converts the value to a string.

The default format looks like 0.xxxxEnn.

The optional parameter s consists of either an integer; or an optional '+' or ' ', followed by an optional number, followed by an optional 'E' or 'F'.

If there is a '+' at the start of s, positive values are returned with a leading '+'.

A space at the start of s returns positive values with a leading space.

If s contains a number, a space is inserted after each group of that many fractional digits.

If s ends with an 'E', engineering notation (0.xxxxEnn) is used.

If s ends with an 'F', conventional floating point notation is used.

Examples:

```BigDecimal('-123.45678901234567890').to_s('5F')
#=> '-123.45678 90123 45678 9'

BigDecimal('123.45678901234567890').to_s('+8F')
#=> '+123.45678901 23456789'

BigDecimal('123.45678901234567890').to_s(' F')
#=> ' 123.4567890123456789'
```
truncate(n) Show source
```static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
VALUE vLoc;
size_t mx, pl = VpSetPrecLimit(0);

if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
iLoc = 0;
}
else {
iLoc = NUM2INT(vLoc);
}

GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
}```

Truncate to the nearest integer (by default), returning the result as a `BigDecimal`.

```BigDecimal('3.14159').truncate #=> 3
BigDecimal('8.7').truncate #=> 8
BigDecimal('-9.9').truncate #=> -9
```

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

```BigDecimal('3.14159').truncate(3) #=> 3.141
BigDecimal('13345.234').truncate(-2) #=> 13300.0
```
zero?() Show source
```static VALUE
BigDecimal_zero(VALUE self)
{
Real *a = GetVpValue(self, 1);
return VpIsZero(a) ? Qtrue : Qfalse;
}```

Returns True if the value is zero.

Ruby Core © 1993–2020 Yukihiro Matsumoto