pandas.core.resample.Resampler.aggregate
- 
Resampler.aggregate(arg, *args, **kwargs)[source]
- 
Aggregate using one or more operations over the specified axis. Parameters: func : function, string, dictionary, or list of string/functions Function to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. For a DataFrame, can pass a dict, if the keys are DataFrame column names. Accepted combinations are: - string function name.
- function.
- list of functions.
- dict of column names -> functions (or list of functions).
 *args Positional arguments to pass to func.**kwargs Keyword arguments to pass to func.Returns: - 
aggregated : DataFrame
 See also pandas.DataFrame.groupby.aggregate,pandas.DataFrame.resample.transform,pandas.DataFrame.aggregateNotesaggis an alias foraggregate. Use the alias.A passed user-defined-function will be passed a Series for evaluation. Examples>>> s = Series([1,2,3,4,5], index=pd.date_range('20130101', periods=5,freq='s')) 2013-01-01 00:00:00 1 2013-01-01 00:00:01 2 2013-01-01 00:00:02 3 2013-01-01 00:00:03 4 2013-01-01 00:00:04 5 Freq: S, dtype: int64>>> r = s.resample('2s') DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left, convention=start, base=0]>>> r.agg(np.sum) 2013-01-01 00:00:00 3 2013-01-01 00:00:02 7 2013-01-01 00:00:04 5 Freq: 2S, dtype: int64 >>> r.agg(['sum','mean','max']) sum mean max 2013-01-01 00:00:00 3 1.5 2 2013-01-01 00:00:02 7 3.5 4 2013-01-01 00:00:04 5 5.0 5>>> r.agg({'result' : lambda x: x.mean() / x.std(), 'total' : np.sum}) total result 2013-01-01 00:00:00 3 2.121320 2013-01-01 00:00:02 7 4.949747 2013-01-01 00:00:04 5 NaN
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.core.resample.Resampler.aggregate.html