pandas.read_fwf
- 
pandas.read_fwf(filepath_or_buffer, colspecs='infer', widths=None, **kwds)[source]
- 
Read a table of fixed-width formatted lines into DataFrame Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the online docs for IO Tools. Parameters: - 
filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any \
 object with a read() method (such as a file handle or StringIO) The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv colspecs : list of pairs (int, int) or ‘infer’. optional A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default=’infer’). widths : list of ints. optional A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous. delimiter : str, default ' ' + ' 'Characters to consider as filler characters in the fixed-width file. Can be used to specify the filler character of the fields if it is not spaces (e.g., ‘~’). delim_whitespace : boolean, default False Specifies whether or not whitespace (e.g. ' 'or'\t') will be used as the sep. Equivalent to settingsep='\s+'. If this option is set to True, nothing should be passed in for thedelimiterparameter.New in version 0.18.1: support for the Python parser. header : int or list of ints, default ‘infer’ Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical toheader=None. Explicitly passheader=0to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines ifskip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None. Duplicates in this list will cause a UserWarningto be issued.index_col : int or sequence or False, default None Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names) usecols : list-like or callable, default None Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in namesor inferred from the document header row(s). For example, a valid list-likeusecolsparameter would be [0, 1, 2] or [‘foo’, ‘bar’, ‘baz’]. Element order is ignored, sousecols=[0, 1]is the same as[1, 0]. To instantiate a DataFrame fromdatawith element order preserved usepd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]for columns in['foo', 'bar']order orpd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]for['bar', 'foo']order.If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD']. Using this parameter results in much faster parsing time and lower memory usage.squeeze : boolean, default False If the parsed data only contains one column then return a Series prefix : str, default None Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, … mangle_dupe_cols : boolean, default True Duplicate columns will be specified as ‘X’, ‘X.1’, …’X.N’, rather than ‘X’…’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns. dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use strorobjecttogether with suitablena_valuessettings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels true_values : list, default None Values to consider as True false_values : list, default None Values to consider as False skipinitialspace : boolean, default False Skip spaces after delimiter. skiprows : list-like or integer or callable, default None Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be lambda x: x in [0, 2].skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine=’c’) nrows : int, default None Number of rows of file to read. Useful for reading pieces of large files na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether na_valuesis passed in, the behavior is as follows:- If keep_default_nais True, andna_valuesare specified,na_valuesis appended to the default NaN values used for parsing.
- If keep_default_nais True, andna_valuesare not specified, only the default NaN values are used for parsing.
- If keep_default_nais False, andna_valuesare specified, only the NaN values specifiedna_valuesare used for parsing.
- If keep_default_nais False, andna_valuesare not specified, no strings will be parsed as NaN.
 Note that if na_filteris passed in as False, thekeep_default_naandna_valuesparameters will be ignored.na_filter : boolean, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file verbose : boolean, default False Indicate number of NA values placed in non-numeric columns skip_blank_lines : boolean, default True If True, skip over blank lines rather than interpreting as NaN values parse_dates : boolean or list of ints or names or list of lists or dict, default False - boolean. If True -> try parsing the index.
- list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
- list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
- dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’
 If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use pd.to_datetimeafterpd.read_csvNote: A fast-path exists for iso8601-formatted dates. infer_datetime_format : boolean, default False If True and parse_datesis enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x.keep_date_col : boolean, default False If True and parse_datesspecifies combining multiple columns then keep the original columns.date_parser : function, default None Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parserto do the conversion. Pandas will try to calldate_parserin three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined byparse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined byparse_datesinto a single array and pass that; and 3) calldate_parseronce for each row using one or more strings (corresponding to the columns defined byparse_dates) as arguments.dayfirst : boolean, default False DD/MM format dates, international and European format iterator : boolean, default False Return TextFileReader object for iteration or getting chunks with get_chunk().chunksize : int, default None Return TextFileReader object for iteration. See the IO Tools docs for more information on iteratorandchunksize.compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’ For on-the-fly decompression of on-disk data. If ‘infer’ and filepath_or_bufferis path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’ (otherwise no decompression). If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.New in version 0.18.1: support for ‘zip’ and ‘xz’ compression. thousands : str, default None Thousands separator decimal : str, default ‘.’ Character to recognize as decimal point (e.g. use ‘,’ for European data). float_precision : string, default None Specifies which converter the C engine should use for floating-point values. The options are Nonefor the ordinary converter,highfor the high-precision converter, andround_tripfor the round-trip converter.lineterminator : str (length 1), default None Character to break file into lines. Only valid with C parser. quotechar : str (length 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default 0 Control field quoting behavior per csv.QUOTE_*constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).doublequote : boolean, default TrueWhen quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a singlequotecharelement.escapechar : str (length 1), default None One-character string used to escape delimiter when quoting is QUOTE_NONE. comment : str, default None Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameterheaderbut not byskiprows. For example, ifcomment='#', parsing#empty\na,b,c\n1,2,3withheader=0will result in ‘a,b,c’ being treated as the header.encoding : str, default None Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings dialect : str or csv.Dialect instance, default None If provided, this parameter will override values (default or not) for the following parameters: delimiter,doublequote,escapechar,skipinitialspace,quotechar, andquoting. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details.tupleize_cols : boolean, default False Deprecated since version 0.21.0: This argument will be removed and will always convert to MultiIndex Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the columns) error_bad_lines : boolean, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. warn_bad_lines : boolean, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. low_memory : boolean, default True Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the dtypeparameter. Note that the entire file is read into a single DataFrame regardless, use thechunksizeoriteratorparameter to return the data in chunks. (Only valid with C parser)memory_map : boolean, default False If a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.Returns: - 
result : DataFrame or TextParser
 
- 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.read_fwf.html