pandas.IntervalIndex.from_arrays
-
classmethod IntervalIndex.from_arrays(left, right, closed='right', name=None, copy=False, dtype=None)[source] -
Construct from two arrays defining the left and right bounds.
Parameters: left : array-like (1-dimensional)
Left bounds for each interval.
right : array-like (1-dimensional)
Right bounds for each interval.
closed : {‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’
Whether the intervals are closed on the left-side, right-side, both or neither.
name : object, optional
Name to be stored in the index.
copy : boolean, default False
Copy the data.
dtype : dtype, optional
If None, dtype will be inferred.
New in version 0.23.0.
Returns: -
index : IntervalIndex
Raises: ValueError
When a value is missing in only one of
leftorright. When a value inleftis greater than the corresponding value inright.See also
-
interval_range - Function to create a fixed frequency IntervalIndex.
-
IntervalIndex.from_breaks - Construct an IntervalIndex from an array of splits.
-
IntervalIndex.from_tuples - Construct an IntervalIndex from a list/array of tuples.
Notes
Each element of
leftmust be less than or equal to therightelement at the same position. If an element is missing, it must be missing in bothleftandright. A TypeError is raised when using an unsupported type forleftorright. At the moment, ‘category’, ‘object’, and ‘string’ subtypes are not supported.Examples
>>> pd.IntervalIndex.from_arrays([0, 1, 2], [1, 2, 3]) IntervalIndex([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]')If you want to segment different groups of people based on ages, you can apply the method as follows:
>>> ages = pd.IntervalIndex.from_arrays([0, 2, 13], ... [2, 13, 19], closed='left') >>> ages IntervalIndex([[0, 2), [2, 13), [13, 19)] closed='left', dtype='interval[int64]') >>> s = pd.Series(['baby', 'kid', 'teen'], ages) >>> s [0, 2) baby [2, 13) kid [13, 19) teen dtype: objectValues may be missing, but they must be missing in both arrays.
>>> pd.IntervalIndex.from_arrays([0, np.nan, 13], ... [2, np.nan, 19]) IntervalIndex([(0.0, 2.0], nan, (13.0, 19.0]] closed='right', dtype='interval[float64]') -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.IntervalIndex.from_arrays.html