pandas.DataFrame.select_dtypes
- 
DataFrame.select_dtypes(include=None, exclude=None)[source]
- 
Return a subset of the DataFrame’s columns based on the column dtypes. Parameters: include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns: subset : DataFrame The subset of the frame including the dtypes in includeand excluding the dtypes inexclude.Raises: ValueError - If both of includeandexcludeare empty
- If includeandexcludehave overlapping elements
- If any kind of string dtype is passed in.
 Notes- To select all numeric types, use np.numberor'number'
- To select strings you must use the objectdtype, but note that this will return all object dtype columns
- See the numpy dtype hierarchy
- To select datetimes, use np.datetime64,'datetime'or'datetime64'
- To select timedeltas, use np.timedelta64,'timedelta'or'timedelta64'
- To select Pandas categorical dtypes, use 'category'
- To select Pandas datetimetz dtypes, use 'datetimetz'(new in 0.20.0) or'datetime64[ns, tz]'
 Examples>>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0>>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0
- If both of 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.select_dtypes.html