pandas.MultiIndex
-
class pandas.MultiIndex[source] -
A multi-level, or hierarchical, index object for pandas objects
Parameters: levels : sequence of arrays
The unique labels for each level
labels : sequence of arrays
Integers for each level designating which label at each location
sortorder : optional int
Level of sortedness (must be lexicographically sorted by that level)
names : optional sequence of objects
Names for each of the index levels. (name is accepted for compat)
copy : boolean, default False
Copy the meta-data
verify_integrity : boolean, default True
Check that the levels/labels are consistent and valid
See also
-
MultiIndex.from_arrays - Convert list of arrays to MultiIndex
-
MultiIndex.from_product - Create a MultiIndex from the cartesian product of iterables
-
MultiIndex.from_tuples - Convert list of tuples to a MultiIndex
-
Index - The base pandas Index type
Notes
See the user guide for more.
Examples
A new
MultiIndexis typically constructed using one of the helper methodsMultiIndex.from_arrays(),MultiIndex.from_product()andMultiIndex.from_tuples(). For example (using.from_arrays):>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex(levels=[[1, 2], ['blue', 'red']], labels=[[0, 0, 1, 1], [1, 0, 1, 0]], names=['number', 'color'])See further examples for how to construct a MultiIndex in the doc strings of the mentioned helper methods.
Attributes
namesNames of levels in MultiIndex nlevelsInteger number of levels in this MultiIndex. levshapeA tuple with the length of each level. levels labels Methods
from_arrays(arrays[, sortorder, names])Convert arrays to MultiIndex from_tuples(tuples[, sortorder, names])Convert list of tuples to MultiIndex from_product(iterables[, sortorder, names])Make a MultiIndex from the cartesian product of multiple iterables set_levels(levels[, level, inplace, …])Set new levels on MultiIndex. set_labels(labels[, level, inplace, …])Set new labels on MultiIndex. to_hierarchical(n_repeat[, n_shuffle])Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle. to_frame([index])Create a DataFrame with the levels of the MultiIndex as columns. is_lexsorted()Return True if the labels are lexicographically sorted sortlevel([level, ascending, sort_remaining])Sort MultiIndex at the requested level. droplevel([level])Return Index with requested level removed. swaplevel([i, j])Swap level i with level j. reorder_levels(order)Rearrange levels using input order. remove_unused_levels()create a new MultiIndex from the current that removing unused levels, meaning that they are not expressed in the labels -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.MultiIndex.html