pandas.crosstab
- 
pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)[source]
- 
Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed Parameters: index : array-like, Series, or list of arrays/Series Values to group by in the rows columns : array-like, Series, or list of arrays/Series Values to group by in the columns values : array-like, optional Array of values to aggregate according to the factors. Requires aggfuncbe specified.aggfunc : function, optional If specified, requires valuesbe specified as wellrownames : sequence, default None If passed, must match number of row arrays passed colnames : sequence, default None If passed, must match number of column arrays passed margins : boolean, default False Add row/column margins (subtotals) dropna : boolean, default True Do not include columns whose entries are all NaN normalize : boolean, {‘all’, ‘index’, ‘columns’}, or {0,1}, default False Normalize by dividing all values by the sum of values. - If passed ‘all’ or True, will normalize over all values.
- If passed ‘index’ will normalize over each row.
- If passed ‘columns’ will normalize over each column.
- If margins is True, will also normalize margin values.
 New in version 0.18.1. Returns: crosstab : DataFrame NotesAny Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified. Any input passed containing Categorical data will have all of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category. In the event that there aren’t overlapping indexes an empty DataFrame will be returned. Examples>>> a array([foo, foo, foo, foo, bar, bar, bar, bar, foo, foo, foo], dtype=object) >>> b array([one, one, one, two, one, one, one, two, two, two, one], dtype=object) >>> c array([dull, dull, shiny, dull, dull, shiny, shiny, dull, shiny, shiny, shiny], dtype=object)>>> crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c']) b one two c dull shiny dull shiny a bar 1 2 1 0 foo 2 2 1 2 >>> foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c']) >>> bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f']) >>> crosstab(foo, bar) # 'c' and 'f' are not represented in the data, # but they still will be counted in the output col_0 d e f row_0 a 1 0 0 b 0 1 0 c 0 0 0
- If passed ‘all’ or 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.20.3/generated/pandas.crosstab.html