pandas.Series.from_csv
- 
classmethod Series.from_csv(path, sep=', ', parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False)[source]
- 
Read CSV file (DISCOURAGED, please use pandas.read_csv()instead).It is preferable to use the more powerful pandas.read_csv()for most general purposes, butfrom_csvmakes for an easy roundtrip to and from a file (the exact counterpart ofto_csv), especially with a time Series.This method only differs from pandas.read_csv()in some defaults:- 
index_colis0instead ofNone(take first column as index by default)
- 
headerisNoneinstead of0(the first row is not used as the column names)
- 
parse_datesisTrueinstead ofFalse(try parsing the index as datetime by default)
 With pandas.read_csv(), the optionsqueeze=Truecan be used to return a Series likefrom_csv.Parameters: path : string file path or file handle / StringIO sep : string, default ‘,’ Field delimiter parse_dates : boolean, default True Parse dates. Different default from read_table header : int, default None Row to use as header (skip prior rows) index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table encoding : string, optional a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3 infer_datetime_format: boolean, default False If True and parse_datesis True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.Returns: y : Series See also 
- 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.20.3/generated/pandas.Series.from_csv.html