pandas.DataFrame.from_csv
- 
classmethod DataFrame.from_csv(path, header=0, sep=', ', index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)[source]
- 
Read CSV file (DISCOURAGED, please use pandas.read_csv()instead).It is preferable to use the more powerful pandas.read_csv()for most general purposes, butfrom_csvmakes for an easy roundtrip to and from a file (the exact counterpart ofto_csv), especially with a DataFrame of time series data.This method only differs from the preferred pandas.read_csv()in some defaults:- 
index_colis0instead ofNone(take first column as index by default)
- 
parse_datesisTrueinstead ofFalse(try parsing the index as datetime by default)
 So a pd.DataFrame.from_csv(path)can be replaced bypd.read_csv(path, index_col=0, parse_dates=True).Parameters: path : string file path or file handle / StringIO header : int, default 0 Row to use as header (skip prior rows) sep : string, default ‘,’ Field delimiter index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table parse_dates : boolean, default True Parse dates. Different default from read_table tupleize_cols : boolean, default False write multi_index columns as a list of tuples (if True) or new (expanded format) if False) infer_datetime_format: boolean, default False If True and parse_datesis True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.Returns: y : DataFrame See also 
- 
    © 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
    https://pandas.pydata.org/pandas-docs/version/0.20.3/generated/pandas.DataFrame.from_csv.html