std::beta, std::betaf, std::betal
| double beta( double x, double y ); float betaf( float x, float y ); long double betal( long double x, long double y ); | (1) | (since C++17) | 
| Promoted beta( Arithmetic x, Arithmetic y ); | (2) | (since C++17) | 
double. If any argument is long double, then the return type Promoted is also long double, otherwise the return type is always double.Parameters
| x, y | - | values of a floating-point or integral type | 
Return value
If no errors occur, value of the beta function ofx and y, that is ∫10tx-1
(1-t)(y-1)
dt, or, equivalently,
| Γ(x)Γ(y) | 
| Γ(x+y) | 
Error handling
Errors may be reported as specified in math_errhandling.
- If any argument is NaN, NaN is returned and domain error is not reported
-  The function is only required to be defined where both xandyare greater than zero, and is allowed to report a domain error otherwise.
Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math.
beta(x, y) equals beta(y, x)  When x and y are positive integers, beta(x,y) equals \(\frac{(x-1)!(y-1)!}{(x+y-1)!}\).
| (x-1)!(y-1)! | 
| (x+y-1)! | 
  Binomial coefficients can be expressed in terms of the beta function: \(\binom{n}{k} = \frac{1}{(n+1)B(n-k+1,k+1)}\).
⎜
⎝n
k⎞
⎟
⎠=
| 1 | 
| (n+1)Β(n-k+1,k+1) | 
Example
#include <cmath>
#include <string>
#include <iostream>
#include <iomanip>
double binom(int n, int k) { return 1/((n+1)*std::beta(n-k+1,k+1)); }
int main()
{
    std::cout << "Pascal's triangle:\n";
    for(int n = 1; n < 10; ++n) {
        std::cout << std::string(20-n*2, ' ');
        for(int k = 1; k < n; ++k)
            std::cout << std::setw(3) << binom(n,k) << ' ';
        std::cout << '\n';
    }
}Output:
Pascal's triangle:
 
                  2 
                3   3 
              4   6   4 
            5  10  10   5 
          6  15  20  15   6 
        7  21  35  35  21   7 
      8  28  56  70  56  28   8 
    9  36  84 126 126  84  36   9See also
| (C++11)(C++11)(C++11) | gamma function (function) | 
External links
Weisstein, Eric W. "Beta Function." From MathWorld--A Wolfram Web Resource.
    © cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
    http://en.cppreference.com/w/cpp/numeric/special_math/beta