tf.clip_by_value
| View source on GitHub |
Clips tensor values to a specified min and max.
tf.clip_by_value(
t, clip_value_min, clip_value_max, name=None
)
Given a tensor t, this operation returns a tensor of the same type and shape as t with its values clipped to clip_value_min and clip_value_max. Any values less than clip_value_min are set to clip_value_min. Any values greater than clip_value_max are set to clip_value_max.
Note:clip_value_minneeds to be smaller or equal toclip_value_maxfor correct results.
For example:
Basic usage passes a scalar as the min and max value.
t = tf.constant([[-10., -1., 0.], [0., 2., 10.]])
t2 = tf.clip_by_value(t, clip_value_min=-1, clip_value_max=1)
t2.numpy()
array([[-1., -1., 0.],
[ 0., 1., 1.]], dtype=float32)
The min and max can be the same size as t, or broadcastable to that size.
t = tf.constant([[-1, 0., 10.], [-1, 0, 10]])
clip_min = [[2],[1]]
t3 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100)
t3.numpy()
array([[ 2., 2., 10.],
[ 1., 1., 10.]], dtype=float32)
Broadcasting fails, intentionally, if you would expand the dimensions of t
t = tf.constant([[-1, 0., 10.], [-1, 0, 10]]) clip_min = [[[2, 1]]] # Has a third axis t4 = tf.clip_by_value(t, clip_value_min=clip_min, clip_value_max=100) Traceback (most recent call last): InvalidArgumentError: Incompatible shapes: [2,3] vs. [1,1,2]
It throws a TypeError if you try to clip an int to a float value (tf.cast the input to float first).
t = tf.constant([[1, 2], [3, 4]], dtype=tf.int32) t5 = tf.clip_by_value(t, clip_value_min=-3.1, clip_value_max=3.1) Traceback (most recent call last): TypeError: Cannot convert ...
| Args | |
|---|---|
t | A Tensor or IndexedSlices. |
clip_value_min | The minimum value to clip to. A scalar Tensor or one that is broadcastable to the shape of t. |
clip_value_max | The maximum value to clip to. A scalar Tensor or one that is broadcastable to the shape of t. |
name | A name for the operation (optional). |
| Returns | |
|---|---|
A clipped Tensor or IndexedSlices. |
| Raises | |
|---|---|
tf.errors.InvalidArgumentError: If the clip tensors would trigger array broadcasting that would make the returned tensor larger than the input. | |
TypeError | If dtype of the input is int32 and dtype of the clip_value_min or clip_value_max is float32 |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/clip_by_value