tf.feature_column.categorical_column_with_vocabulary_list
| View source on GitHub |
A CategoricalColumn with in-memory vocabulary.
tf.feature_column.categorical_column_with_vocabulary_list(
key, vocabulary_list, dtype=None, default_value=-1, num_oov_buckets=0
)
Use this when your inputs are in string or integer format, and you have an in-memory vocabulary mapping each value to an integer ID. By default, out-of-vocabulary values are ignored. Use either (but not both) of num_oov_buckets and default_value to specify how to include out-of-vocabulary values.
For input dictionary features, features[key] is either Tensor or SparseTensor. If Tensor, missing values can be represented by -1 for int and '' for string, which will be dropped by this feature column.
Example with num_oov_buckets: In the following example, each input in vocabulary_list is assigned an ID 0-3 corresponding to its index (e.g., input 'B' produces output 2). All other inputs are hashed and assigned an ID 4-5.
colors = categorical_column_with_vocabulary_list(
key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
num_oov_buckets=2)
columns = [colors, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
Example with default_value: In the following example, each input in vocabulary_list is assigned an ID 0-4 corresponding to its index (e.g., input 'B' produces output 3). All other inputs are assigned default_value 0.
colors = categorical_column_with_vocabulary_list(
key='colors', vocabulary_list=('X', 'R', 'G', 'B', 'Y'), default_value=0)
columns = [colors, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
And to make an embedding with either:
columns = [embedding_column(colors, 3),...] features = tf.io.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns)
| Args | |
|---|---|
key | A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature Tensor objects, and feature columns. |
vocabulary_list | An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in vocabulary_list. Must be castable to dtype. |
dtype | The type of features. Only string and integer types are supported. If None, it will be inferred from vocabulary_list. |
default_value | The integer ID value to return for out-of-vocabulary feature values, defaults to -1. This can not be specified with a positive num_oov_buckets. |
num_oov_buckets | Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range [len(vocabulary_list), len(vocabulary_list)+num_oov_buckets) based on a hash of the input value. A positive num_oov_buckets can not be specified with default_value. |
| Returns | |
|---|---|
A CategoricalColumn with in-memory vocabulary. |
| Raises | |
|---|---|
ValueError | if vocabulary_list is empty, or contains duplicate keys. |
ValueError | num_oov_buckets is a negative integer. |
ValueError | num_oov_buckets and default_value are both specified. |
ValueError | if dtype is not integer or string. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_list