tf.keras.losses.MSE
| View source on GitHub |
Computes the mean squared error between labels and predictions.
tf.keras.losses.MSE(
y_true, y_pred
)
After computing the squared distance between the inputs, the mean value over the last dimension is returned.
loss = mean(square(y_true - y_pred), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.mean_squared_error(y_true, y_pred)
assert loss.shape == (2,)
assert np.array_equal(
loss.numpy(), np.mean(np.square(y_true - y_pred), axis=-1))
| Args | |
|---|---|
y_true | Ground truth values. shape = [batch_size, d0, .. dN]. |
y_pred | The predicted values. shape = [batch_size, d0, .. dN]. |
| Returns | |
|---|---|
Mean squared error values. shape = [batch_size, d0, .. dN-1]. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/losses/MSE