tf.raw_ops.ScatterNd
Scatter updates into a new tensor according to indices.
tf.raw_ops.ScatterNd(
indices, updates, shape, name=None
)
Creates a new tensor by applying sparse updates to individual values or slices within a tensor (initially zero for numeric, empty for string) of the given shape according to indices. This operator is the inverse of the tf.gather_nd operator which extracts values or slices from a given tensor.
This operation is similar to tensor_scatter_add, except that the tensor is zero-initialized. Calling tf.scatter_nd(indices, values, shape) is identical to tensor_scatter_add(tf.zeros(shape, values.dtype), indices, values)
If indices contains duplicates, then their updates are accumulated (summed).
indices is an integer tensor containing indices into a new tensor of shape shape. The last dimension of indices can be at most the rank of shape:
indices.shape[-1] <= shape.rank
The last dimension of indices corresponds to indices into elements (if indices.shape[-1] = shape.rank) or slices (if indices.shape[-1] < shape.rank) along dimension indices.shape[-1] of shape. updates is a tensor with shape
indices.shape[:-1] + shape[indices.shape[-1]:]
The simplest form of scatter is to insert individual elements in a tensor by index. For example, say we want to insert 4 scattered elements in a rank-1 tensor with 8 elements.
In Python, this scatter operation would look like this:
indices = tf.constant([[4], [3], [1], [7]]) updates = tf.constant([9, 10, 11, 12]) shape = tf.constant([8]) scatter = tf.scatter_nd(indices, updates, shape) print(scatter)
The resulting tensor would look like this:
[0, 11, 0, 10, 9, 0, 0, 12]
We can also, insert entire slices of a higher rank tensor all at once. For example, if we wanted to insert two slices in the first dimension of a rank-3 tensor with two matrices of new values.
In Python, this scatter operation would look like this:
indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]],
[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]]])
shape = tf.constant([4, 4, 4])
scatter = tf.scatter_nd(indices, updates, shape)
print(scatter)
The resulting tensor would look like this:
[[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]
Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, the index is ignored.
| Args | |
|---|---|
indices | A Tensor. Must be one of the following types: int32, int64. Index tensor. |
updates | A Tensor. Updates to scatter into output. |
shape | A Tensor. Must have the same type as indices. 1-D. The shape of the resulting tensor. |
name | A name for the operation (optional). |
| Returns | |
|---|---|
A Tensor. Has the same type as updates. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/ScatterNd