tf.constant
| View source on GitHub |
Creates a constant tensor from a tensor-like object.
tf.constant(
value, dtype=None, shape=None, name='Const'
)
Note: All eagertf.Tensorvalues are immutable (in contrast totf.Variable). There is nothing especially constant about the value returned fromtf.constant. This function it is not fundamentally different fromtf.convert_to_tensor. The nametf.constantcomes from thevaluebeing embeded in aConstnode in thetf.Graph.tf.constantis useful for asserting that the value can be embedded that way.
If the argument dtype is not specified, then the type is inferred from the type of value.
# Constant 1-D Tensor from a python list.
tf.constant([1, 2, 3, 4, 5, 6])
<tf.Tensor: shape=(6,), dtype=int32,
numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
# Or a numpy array
a = np.array([[1, 2, 3], [4, 5, 6]])
tf.constant(a)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
array([[1, 2, 3],
[4, 5, 6]])>
If dtype is specified the resulting tensor values are cast to the requested dtype.
tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
<tf.Tensor: shape=(6,), dtype=float64,
numpy=array([1., 2., 3., 4., 5., 6.])>
If shape is set, the value is reshaped to match. Scalars are expanded to fill the shape:
tf.constant(0, shape=(2, 3))
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
[0, 0, 0]], dtype=int32)>
tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
[4, 5, 6]], dtype=int32)>
tf.constant has no effect if an eager Tensor is passed as the value, it even transmits gradients:
v = tf.Variable([0.0])
with tf.GradientTape() as g:
loss = tf.constant(v + v)
g.gradient(loss, v).numpy()
array([2.], dtype=float32)
But, since tf.constant embeds the value in the tf.Graph this fails for symbolic tensors:
with tf.compat.v1.Graph().as_default(): i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32) t = tf.constant(i) Traceback (most recent call last): TypeError: ...
tf.constant will always create CPU (host) tensors. In order to create tensors on other devices, use tf.identity. (If the value is an eager Tensor, however, the tensor will be returned unmodified as mentioned above.)
Related Ops:
-
tf.convert_to_tensoris similar but:- It has no
shapeargument. - Symbolic tensors are allowed to pass through.
- It has no
with tf.compat.v1.Graph().as_default(): i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32) t = tf.convert_to_tensor(i)
-
tf.fill: differs in a few ways:-
tf.constantsupports arbitrary constants, not just uniform scalar Tensors liketf.fill. -
tf.fillcreates an Op in the graph that is expanded at runtime, so it can efficiently represent large tensors. - Since
tf.filldoes not embed the value, it can produce dynamically sized outputs.
-
| Args | |
|---|---|
value | A constant value (or list) of output type dtype. |
dtype | The type of the elements of the resulting tensor. |
shape | Optional dimensions of resulting tensor. |
name | Optional name for the tensor. |
| Returns | |
|---|---|
| A Constant Tensor. |
| Raises | |
|---|---|
TypeError | if shape is incorrectly specified or unsupported. |
ValueError | if called on a symbolic tensor. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/constant