tf.keras.layers.experimental.preprocessing.RandomZoom
Randomly zoom each image during training.
Inherits From: PreprocessingLayer, Layer, Module
tf.keras.layers.experimental.preprocessing.RandomZoom(
height_factor, width_factor=None, fill_mode='reflect',
interpolation='bilinear', seed=None, name=None, fill_value=0.0,
**kwargs
)
| Arguments | |
|---|---|
height_factor | a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for zooming vertically. When represented as a single float, this value is used for both the upper and lower bound. A positive value means zooming out, while a negative value means zooming in. For instance, height_factor=(0.2, 0.3) result in an output zoomed out by a random amount in the range [+20%, +30%]. height_factor=(-0.3, -0.2) result in an output zoomed in by a random amount in the range [+20%, +30%]. |
width_factor | a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for zooming horizontally. When represented as a single float, this value is used for both the upper and lower bound. For instance, width_factor=(0.2, 0.3) result in an output zooming out between 20% to 30%. width_factor=(-0.3, -0.2) result in an output zooming in between 20% to 30%. Defaults to None, i.e., zooming vertical and horizontal directions by preserving the aspect ratio. |
fill_mode | Points outside the boundaries of the input are filled according to the given mode (one of {'constant', 'reflect', 'wrap', 'nearest'}).
|
interpolation | Interpolation mode. Supported values: "nearest", "bilinear". |
seed | Integer. Used to create a random seed. |
name | A string, the name of the layer. |
fill_value | a float represents the value to be filled outside the boundaries when fill_mode is "constant". |
Example:
input_img = np.random.random((32, 224, 224, 3)) layer = tf.keras.layers.experimental.preprocessing.RandomZoom(.5, .2) out_img = layer(input_img) out_img.shape TensorShape([32, 224, 224, 3])
Input shape:
4D tensor with shape: (samples, height, width, channels), data_format='channels_last'.
Output shape:
4D tensor with shape: (samples, height, width, channels), data_format='channels_last'.
| Raise | |
|---|---|
ValueError | if lower bound is not between [0, 1], or upper bound is negative. |
Methods
adapt
adapt(
data, reset_state=True
)
Fits the state of the preprocessing layer to the data being passed.
| Arguments | |
|---|---|
data | The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array. |
reset_state | Optional argument specifying whether to clear the state of the layer at the start of the call to adapt, or whether to start from the existing state. This argument may not be relevant to all preprocessing layers: a subclass of PreprocessingLayer may choose to throw if 'reset_state' is set to False. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/experimental/preprocessing/RandomZoom