tf.keras.utils.CustomObjectScope
| View source on GitHub |
Exposes custom classes/functions to Keras deserialization internals.
tf.keras.utils.CustomObjectScope(
*args
)
Under a scope with custom_object_scope(objects_dict), Keras methods such as tf.keras.models.load_model or tf.keras.models.model_from_config will be able to deserialize any custom object referenced by a saved config (e.g. a custom layer or metric).
Example:
Consider a custom regularizer my_regularizer:
layer = Dense(3, kernel_regularizer=my_regularizer)
config = layer.get_config() # Config contains a reference to `my_regularizer`
...
# Later:
with custom_object_scope({'my_regularizer': my_regularizer}):
layer = Dense.from_config(config)
| Arguments | |
|---|---|
*args | Dictionary or dictionaries of {name: object} pairs. |
Methods
__enter__
__enter__()
__exit__
__exit__(
*args, **kwargs
)
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/utils/CustomObjectScope