tf.raw_ops.SparseToDense
Converts a sparse representation into a dense tensor.
tf.raw_ops.SparseToDense(
sparse_indices, output_shape, sparse_values, default_value,
validate_indices=True, name=None
)
Builds an array dense with shape output_shape such that
# If sparse_indices is scalar dense[i] = (i == sparse_indices ? sparse_values : default_value) # If sparse_indices is a vector, then for each i dense[sparse_indices[i]] = sparse_values[i] # If sparse_indices is an n by d matrix, then for each i in [0, n) dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]
All other values in dense are set to default_value. If sparse_values is a scalar, all sparse indices are set to this single value.
Indices should be sorted in lexicographic order, and indices must not contain any repeats. If validate_indices is true, these properties are checked during execution.
| Args | |
|---|---|
sparse_indices | A Tensor. Must be one of the following types: int32, int64. 0-D, 1-D, or 2-D. sparse_indices[i] contains the complete index where sparse_values[i] will be placed. |
output_shape | A Tensor. Must have the same type as sparse_indices. 1-D. Shape of the dense output tensor. |
sparse_values | A Tensor. 1-D. Values corresponding to each row of sparse_indices, or a scalar value to be used for all sparse indices. |
default_value | A Tensor. Must have the same type as sparse_values. Scalar value to set for indices not specified in sparse_indices. |
validate_indices | An optional bool. Defaults to True. If true, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats. |
name | A name for the operation (optional). |
| Returns | |
|---|---|
A Tensor. Has the same type as sparse_values. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/raw_ops/SparseToDense