tf.keras.layers.UpSampling2D
| View source on GitHub |
Upsampling layer for 2D inputs.
tf.keras.layers.UpSampling2D(
size=(2, 2), data_format=None, interpolation='nearest', **kwargs
)
Repeats the rows and columns of the data by size[0] and size[1] respectively.
Examples:
input_shape = (2, 2, 1, 3)
x = np.arange(np.prod(input_shape)).reshape(input_shape)
print(x)
[[[[ 0 1 2]]
[[ 3 4 5]]]
[[[ 6 7 8]]
[[ 9 10 11]]]]
y = tf.keras.layers.UpSampling2D(size=(1, 2))(x)
print(y)
tf.Tensor(
[[[[ 0 1 2]
[ 0 1 2]]
[[ 3 4 5]
[ 3 4 5]]]
[[[ 6 7 8]
[ 6 7 8]]
[[ 9 10 11]
[ 9 10 11]]]], shape=(2, 2, 2, 3), dtype=int64)
| Arguments | |
|---|---|
size | Int, or tuple of 2 integers. The upsampling factors for rows and columns. |
data_format | A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last". |
interpolation | A string, one of nearest or bilinear. |
Input shape:
4D tensor with shape:
- If
data_formatis"channels_last":(batch_size, rows, cols, channels) - If
data_formatis"channels_first":(batch_size, channels, rows, cols)
Output shape:
4D tensor with shape:
- If
data_formatis"channels_last":(batch_size, upsampled_rows, upsampled_cols, channels) - If
data_formatis"channels_first":(batch_size, channels, upsampled_rows, upsampled_cols)
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers/UpSampling2D