numpy.apply_along_axis
- 
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)[source]
- 
Apply a function to 1-D slices along the given axis. Execute func1d(a, *args)wherefunc1doperates on 1-D arrays andais a 1-D slice ofarralongaxis.Parameters: func1d : function This function should accept 1-D arrays. It is applied to 1-D slices of arralong the specified axis.axis : integer Axis along which arris sliced.arr : ndarray Input array. args : any Additional arguments to func1d.kwargs: any Additional named arguments to func1d.New in version 1.9.0. Returns: apply_along_axis : ndarray The output array. The shape of outarris identical to the shape ofarr, except along theaxisdimension, where the length ofoutarris equal to the size of the return value offunc1d. Iffunc1dreturns a scalaroutarrwill have one fewer dimensions thanarr.See also - apply_over_axes
- Apply a function repeatedly over multiple axes.
 Examples>>> def my_func(a): ... """Average first and last element of a 1-D array""" ... return (a[0] + a[-1]) * 0.5 >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> np.apply_along_axis(my_func, 0, b) array([ 4., 5., 6.]) >>> np.apply_along_axis(my_func, 1, b) array([ 2., 5., 8.]) For a function that doesn’t return a scalar, the number of dimensions in outarris the same asarr.>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]]) >>> np.apply_along_axis(sorted, 1, b) array([[1, 7, 8], [3, 4, 9], [2, 5, 6]])
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.apply_along_axis.html