numpy.ma.innerproduct
- 
numpy.ma.innerproduct(a, b)[source]
- 
Inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. Parameters: a, b : array_like If aandbare nonscalar, their last dimensions must match.Returns: out : ndarray out.shape = a.shape[:-1] + b.shape[:-1]Raises: ValueError If the last dimension of aandbhas different size.See also - tensordot
- Sum products over arbitrary axes.
- dot
- Generalised matrix product, using second last dimension of b.
- einsum
- Einstein summation convention.
 NotesMasked values are replaced by 0. ExamplesOrdinary inner product for vectors: >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2 A multidimensional example: >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14, 38, 62], [ 86, 110, 134]])An example where bis a scalar:>>> np.inner(np.eye(2), 7) array([[ 7., 0.], [ 0., 7.]])
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.ma.innerproduct.html