numpy.asarray
- 
numpy.asarray(a, dtype=None, order=None)[source]
- 
Convert the input to an array. Parameters: a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {‘C’, ‘F’}, optional Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’. Returns: out : ndarray Array interpretation of a. No copy is performed if the input is already an ndarray. Ifais a subclass of ndarray, a base class ndarray is returned.See also - asanyarray
- Similar function which passes through subclasses.
- ascontiguousarray
- Convert input to a contiguous array.
- asfarray
- Convert input to a floating point ndarray.
- asfortranarray
- Convert input to an ndarray with column-major memory order.
- asarray_chkfinite
- Similar function which checks input for NaNs and Infs.
- fromiter
- Create an array from an iterator.
- fromfunction
- Construct an array by executing a function on grid positions.
 ExamplesConvert a list into an array: >>> a = [1, 2] >>> np.asarray(a) array([1, 2]) Existing arrays are not copied: >>> a = np.array([1, 2]) >>> np.asarray(a) is a True If dtypeis set, array is copied only if dtype does not match:>>> a = np.array([1, 2], dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False Contrary to asanyarray, ndarray subclasses are not passed through:>>> issubclass(np.matrix, np.ndarray) True >>> a = np.matrix([[1, 2]]) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True 
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.asarray.html