numpy.asanyarray
- 
numpy.asanyarray(a, dtype=None, order=None)[source]
- 
Convert the input to an ndarray, but pass ndarray subclasses through. Parameters: a : array_like Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {‘C’, ‘F’}, optional Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’. Returns: out : ndarray or an ndarray subclass Array interpretation of a. Ifais an ndarray or a subclass of ndarray, it is returned as-is and no copy is performed.See also - asarray
- Similar function which always returns ndarrays.
- ascontiguousarray
- Convert input to a contiguous array.
- asfarray
- Convert input to a floating point ndarray.
- asfortranarray
- Convert input to an ndarray with column-major memory order.
- asarray_chkfinite
- Similar function which checks input for NaNs and Infs.
- fromiter
- Create an array from an iterator.
- fromfunction
- Construct an array by executing a function on grid positions.
 ExamplesConvert a list into an array: >>> a = [1, 2] >>> np.asanyarray(a) array([1, 2]) Instances of ndarraysubclasses are passed through as-is:>>> a = np.matrix([1, 2]) >>> np.asanyarray(a) is a True 
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.asanyarray.html