numpy.polynomial.chebyshev.chebder
- 
numpy.polynomial.chebyshev.chebder(c, m=1, scl=1, axis=0)[source]
- 
Differentiate a Chebyshev series. Returns the Chebyshev series coefficients cdifferentiatedmtimes alongaxis. At each iteration the result is multiplied byscl(the scaling factor is for use in a linear change of variable). The argumentcis an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series1*T_0 + 2*T_1 + 3*T_2while [[1,2],[1,2]] represents1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)if axis=0 isxand axis=1 isy.Parameters: c : array_like Array of Chebyshev series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. m : int, optional Number of derivatives taken, must be non-negative. (Default: 1) scl : scalar, optional Each differentiation is multiplied by scl. The end result is multiplication byscl**m. This is for use in a linear change of variable. (Default: 1)axis : int, optional Axis over which the derivative is taken. (Default: 0). New in version 1.7.0. Returns: der : ndarray Chebyshev series of the derivative. See also NotesIn general, the result of differentiating a C-series needs to be “reprojected” onto the C-series basis set. Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below. Examples>>> from numpy.polynomial import chebyshev as C >>> c = (1,2,3,4) >>> C.chebder(c) array([ 14., 12., 24.]) >>> C.chebder(c,3) array([ 96.]) >>> C.chebder(c,scl=-1) array([-14., -12., -24.]) >>> C.chebder(c,2,-1) array([ 12., 96.]) 
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.polynomial.chebyshev.chebder.html