numpy.ma.masked_object
- 
numpy.ma.masked_object(x, value, copy=True, shrink=True)[source]
- 
Mask the array xwhere the data are exactly equal to value.This function is similar to masked_values, but only suitable for object arrays: for floating point, usemasked_valuesinstead.Parameters: x : array_like Array to mask value : object Comparison value copy : {True, False}, optional Whether to return a copy of x.shrink : {True, False}, optional Whether to collapse a mask full of False to nomask Returns: result : MaskedArray The result of masking xwhere equal tovalue.See also - masked_where
- Mask where a condition is met.
- masked_equal
- Mask where equal to a given value (integers).
- masked_values
- Mask using floating point equality.
 Examples>>> import numpy.ma as ma >>> food = np.array(['green_eggs', 'ham'], dtype=object) >>> # don't eat spoiled food >>> eat = ma.masked_object(food, 'green_eggs') >>> print(eat) [-- ham] >>> # plain ol` ham is boring >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) >>> eat = ma.masked_object(fresh_food, 'green_eggs') >>> print(eat) [cheese ham pineapple] Note that maskis set tonomaskif possible.>>> eat masked_array(data = [cheese ham pineapple], mask = False, fill_value=?)
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.ma.masked_object.html