numpy.ma.masked_values
- 
numpy.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)[source]
- 
Mask using floating point equality. Return a MaskedArray, masked where the data in array xare approximately equal tovalue, i.e. where the following condition is True(abs(x - value) <= atol+rtol*abs(value)) The fill_value is set to valueand the mask is set tonomaskif possible. For integers, consider usingmasked_equal.Parameters: x : array_like Array to mask. value : float Masking value. rtol : float, optional Tolerance parameter. atol : float, optional Tolerance parameter (1e-8). copy : bool, optional Whether to return a copy of x.shrink : bool, optional Whether to collapse a mask full of False to nomask.Returns: result : MaskedArray The result of masking xwhere approximately equal tovalue.See also - masked_where
- Mask where a condition is met.
- masked_equal
- Mask where equal to a given value (integers).
 Examples>>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data = [1.0 -- 2.0 -- 3.0], mask = [False True False True False], fill_value=1.1)Note that maskis set tonomaskif possible.>>> ma.masked_values(x, 1.5) masked_array(data = [ 1. 1.1 2. 1.1 3. ], mask = False, fill_value=1.5)For integers, the fill value will be different in general to the result of masked_equal.>>> x = np.arange(5) >>> x array([0, 1, 2, 3, 4]) >>> ma.masked_values(x, 2) masked_array(data = [0 1 -- 3 4], mask = [False False True False False], fill_value=2) >>> ma.masked_equal(x, 2) masked_array(data = [0 1 -- 3 4], mask = [False False True False False], fill_value=999999)
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.ma.masked_values.html