numpy.isclose
- 
numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)[source]
- 
Returns a boolean array where two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference ( rtol* abs(b)) and the absolute differenceatolare added together to compare against the absolute difference betweenaandb.Parameters: a, b : array_like Input arrays to compare. rtol : float The relative tolerance parameter (see Notes). atol : float The absolute tolerance parameter (see Notes). equal_nan : bool Whether to compare NaN’s as equal. If True, NaN’s in awill be considered equal to NaN’s inbin the output array.Returns: y : array_like Returns a boolean array of where aandbare equal within the given tolerance. If bothaandbare scalars, returns a single boolean value.See also NotesNew in version 1.7.0. For finite values, isclose uses the following equation to test whether two floating point values are equivalent. absolute(a-b) <= (atol+rtol* absolute(b))The above equation is not symmetric in aandb, so thatisclose(a, b)might be different fromisclose(b, a)in some rare cases.Examples>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8]) array([True, False]) >>> np.isclose([1e10,1e-8], [1.00001e10,1e-9]) array([True, True]) >>> np.isclose([1e10,1e-8], [1.0001e10,1e-9]) array([False, True]) >>> np.isclose([1.0, np.nan], [1.0, np.nan]) array([True, False]) >>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) array([True, True]) 
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.isclose.html