numpy.correlate
- 
numpy.correlate(a, v, mode='valid')[source]
- 
Cross-correlation of two 1-dimensional sequences. This function computes the correlation as generally defined in signal processing texts: c_{av}[k] = sum_n a[n+k] * conj(v[n])with a and v sequences being zero-padded where necessary and conj being the conjugate. Parameters: a, v : array_like Input sequences. mode : {‘valid’, ‘same’, ‘full’}, optional Refer to the convolvedocstring. Note that the default is ‘valid’, unlikeconvolve, which uses ‘full’.old_behavior : bool old_behaviorwas removed in NumPy 1.10. If you need the old behavior, usemultiarray.correlate.Returns: out : ndarray Discrete cross-correlation of aandv.See also - convolve
- Discrete, linear convolution of two one-dimensional sequences.
- multiarray.correlate
- Old, no conjugate, version of correlate.
 NotesThe definition of correlation above is not unique and sometimes correlation may be defined differently. Another common definition is: c'_{av}[k] = sum_n a[n] conj(v[n+k])which is related to c_{av}[k]byc'_{av}[k] = c_{av}[-k].Examples>>> np.correlate([1, 2, 3], [0, 1, 0.5]) array([ 3.5]) >>> np.correlate([1, 2, 3], [0, 1, 0.5], "same") array([ 2. , 3.5, 3. ]) >>> np.correlate([1, 2, 3], [0, 1, 0.5], "full") array([ 0.5, 2. , 3.5, 3. , 0. ]) Using complex sequences: >>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full') array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ]) Note that you get the time reversed, complex conjugated result when the two input sequences change places, i.e., c_{va}[k] = c^{*}_{av}[-k]:>>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full') array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j]) 
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.correlate.html