numpy.random.noncentral_chisquare
- 
numpy.random.noncentral_chisquare(df, nonc, size=None)
- 
Draw samples from a noncentral chi-square distribution. The noncentral  distribution is a generalisation of the distribution is a generalisation of the distribution. distribution.Parameters: df : int Degrees of freedom, should be > 0 as of Numpy 1.10, should be > 1 for earlier versions. nonc : float Non-centrality, should be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., (m, n, k), thenm * n * ksamples are drawn. Default is None, in which case a single value is returned.NotesThe probability density function for the noncentral Chi-square distribution is  where  is the Chi-square with q degrees of freedom. is the Chi-square with q degrees of freedom.In Delhi (2007), it is noted that the noncentral chi-square is useful in bombing and coverage problems, the probability of killing the point target given by the noncentral chi-squared distribution. References[R245] Delhi, M.S. Holla, “On a noncentral chi-square distribution in the analysis of weapon systems effectiveness”, Metrika, Volume 15, Number 1 / December, 1970. [R246] Wikipedia, “Noncentral chi-square distribution” http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution ExamplesDraw values from the distribution and plot the histogram >>> import matplotlib.pyplot as plt >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, normed=True) >>> plt.show() (Source code, png, pdf)   Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), normed=True) >>> values2 = plt.hist(np.random.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), normed=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show()   Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, normed=True) >>> plt.show()   
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.random.noncentral_chisquare.html