numpy.fft.rfftfreq
- 
numpy.fft.rfftfreq(n, d=1.0)[source]
- 
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft). The returned float array fcontains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.Given a window length nand a sample spacingd:f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd Unlike fftfreq(but likescipy.fftpack.rfftfreq) the Nyquist frequency component is considered to be positive.Parameters: n : int Window length. d : scalar, optional Sample spacing (inverse of the sampling rate). Defaults to 1. Returns: f : ndarray Array of length n//2 + 1containing the sample frequencies.Examples>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) >>> fourier = np.fft.rfft(signal) >>> n = signal.size >>> sample_rate = 100 >>> freq = np.fft.fftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.]) >>> freq = np.fft.rfftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., 30., 40., 50.]) 
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.fft.rfftfreq.html