numpy.polynomial.hermite_e.hermeder
- 
numpy.polynomial.hermite_e.hermeder(c, m=1, scl=1, axis=0)[source]
- 
Differentiate a Hermite_e series. Returns the series coefficients cdifferentiatedmtimes alongaxis. At each iteration the result is multiplied byscl(the scaling factor is for use in a linear change of variable). The argumentcis an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series1*He_0 + 2*He_1 + 3*He_2while [[1,2],[1,2]] represents1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y) + 2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y)if axis=0 isxand axis=1 isy.Parameters: c : array_like Array of Hermite_e series coefficients. If cis multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index.m : int, optional Number of derivatives taken, must be non-negative. (Default: 1) scl : scalar, optional Each differentiation is multiplied by scl. The end result is multiplication byscl**m. This is for use in a linear change of variable. (Default: 1)axis : int, optional Axis over which the derivative is taken. (Default: 0). New in version 1.7.0. Returns: der : ndarray Hermite series of the derivative. See also NotesIn general, the result of differentiating a Hermite series does not resemble the same operation on a power series. Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below. Examples>>> from numpy.polynomial.hermite_e import hermeder >>> hermeder([ 1., 1., 1., 1.]) array([ 1., 2., 3.]) >>> hermeder([-0.25, 1., 1./2., 1./3., 1./4 ], m=2) array([ 1., 2., 3.]) 
    © 2008–2016 NumPy Developers
Licensed under the NumPy License.
    https://docs.scipy.org/doc/numpy-1.11.0/reference/generated/numpy.polynomial.hermite_e.hermeder.html